
Scalable Similarity�eries over Complex Data
Dissertation Summary

Daniel Kocher

dkocher@cs.sbg.ac.at

University of Salzburg

Supervisor: Univ.-Prof. Dipl.-Ing. Nikolaus Augsten, Ph.D.

Co-Supervisor: Assoc.-Prof. Dr. Ana Sokolova

May 18, 2021

Abstract

In this dissertation, we study a particular class of queries in the context of database systems,

namely similarity queries. �eries in database systems o�en use equality predicates to com-

pare data items. Instead, a similarity query uses some notion of similarity to compare data

items. �e usage of similarity functions o�en increases the algorithmic complexity of such

queries and prevents the application of standard query evaluation techniques (like hashing or

sorting). As a result, similarity queries are o�en impracticable for realistic data. �erefore,

novel e�cient solutions for similarity queries that scale to large datasets must be developed.

Speci�cally, we study two types of similarity queries. Top-k subtree similarity queries for trees
aim to �nd and rank the k subtrees in a large document tree that are most similar to a given

reference tree (the query tree). Density-based clustering for sets aims to partition a given col-

lection of sets into dense regions that are separated by low-density regions. We pinpoint the

problems of existing solutions and carefully design novel solutions to solve these problems ef-

�ciently. Furthermore, we empirically evaluate our solutions against the state of the art and

provide in-depth discussions of the results.

�is cumulative dissertation is organized as a collection of conference papers. It consists of

an introduction and three chapters that are at the core of this dissertation. Each chapter tackles

a speci�c type of similarity query. Chapter 2 [1] and Chapter 3 [2] are self-contained scienti�c

publications that have been published at peer-reviewed venues. Chapter 4 extends the solution

presented in Chapter 3 to multi-core environments and is being submi�ed to a peer-reviewed

journal. �e last chapter concludes this dissertation.

Alongside the development of new e�cient solutions for similarity queries on an algorith-

mic level, we also contribute towards the reproducibility of data and experiments in the course

of this thesis. First, we provide a reproducibility package for our ACM SIGMOD 2019 publica-

tion on top-k subtree similarity queries (Chapter 2). Our package has been awarded the ACM

“Results Replicated” label by the ACM SIGMOD 2020 Reproducibility program commi�ee. Sec-

ond, the experiences in the course of this thesis led to a journal article [3] that highlights the

importance of data reproducibility. �e article points out that o�en not even the data that is

used to run the experiments can be reproduced. Furthermore, we de�ne a data reproducibility

model called RPI that is based on three levels of data reproducibility (Raw data, Preparation

instructions, and Input data), summarize our own experience, and exemplify our best practices.

�is was a collaborative work of the Database Research Group at the University of Salzburg

and thus, is not part of this cumulative dissertation.

1



Introduction

Nowadays, database systems must manage continually and fast growing data volumes. Fur-

thermore, database systems must be able to store and retrieve complex data items to meet the

requirements of modern applications. Complex data items can stem from a wide range of ar-

eas, including hierarchically encoded data in bioinformatics or natural language processing,

as well as set-encoded data to represent tweets, tags, or event logs. Similarity queries con-
stitute one substantial class of queries in database systems. Traditional queries o�en evaluate

equality predicates, i.e., data items are checked for their equality. Instead, similarity queries use

predicates that compare data items based on some notion of similarity. Various similarity func-

tions have been developed to assess the similarity for di�erent data types like strings, trees,

sets, or binary vectors. However, it is not straightforward to integrate similarity predicates

into database operators e�ciently. �e similarity predicates introduce additional complexity

into the query evaluation and o�en render standard techniques (like sorting or hashing) in-

applicable. Similarity functions are o�en computationally expensive, and standard techniques

typically fail to leverage speci�c optimizations for the underlying data type. �erefore, novel

specialized solutionsmust be developed to support e�cient similarity queries for large datasets.

In this cumulative dissertation, we focus on the development of e�cient and scalable solu-

tions for two popular types of similarity queries: (1) Top-k subtree similarity queries for trees,

which aim to rank the k most similar subtrees in a large document tree with respect to a given

reference tree, and (2) the density-based clustering of sets, which aims to identify clusters in

a collection of sets based on the notion of density. Methodologically, we identify the prob-

lems of existing solutions, carefully design new data structures and algorithms to tackle these

problems, implement our approaches and existing solutions in C++, empirically evaluate them

against the state of the art, and discuss the outcomes thoroughly. Furthermore, we prove the

correctness of our solutions and analyze them with respect to time and space complexity.

In the remainder of this dissertation summary, we summarize the core contributions of the

respective topics in the cumulative dissertation. �e last section concludes this summary.

Scalable Top-k Subtree Similarity�eries

Authors Daniel Kocher and Nikolaus Augsten.

Title A Scalable Index for Top-k Subtree Similarity�eries.

Venue Int. Conf. on Management of Data (SIGMOD), Amsterdam. ACM, 2019.

Thesis Ref. Chapter 2, Appendix A.

In this publication, we study so-called top-k subtree similarity queries. Given a large docu-

ment tree,T , a top-k subtree similarity query retrieves the k subtrees inT that are most similar

to a given query tree, Q . Speci�cally, we investigate this type of similarity query for ordered

labeled trees and use the well-established tree edit distance (TED) to assess the similarity of

two trees. In an ordered labeled tree, a strict, total order on the children of a node is enforced,

and each node has a label that carries some information. �e tree edit distance between two

trees T1 and T2 is the minimum number of node edit operations that transform T1 into T2. Tra-
ditionally, the following three node edit operations are supported: (1) Rename the label of a

node, (2) delete a node, and (3) insert a node. �e tree edit distance requires cubic time and

quadratic space in the number of tree nodes, hence a naive solution that computes the tree edit

distance between the query tree Q and each single subtree of T are infeasible.

Previous solutions follow two di�erent philosophies: (1) TASM-Postorder is the fastest solu-

tion without building an index structure. Instead, TASM-Postorder scans the entire document

tree to answer a top-k subtree similarity query. Due to its index-free nature, TASM-Postorder

has a very small memory footprint (independent of the size of the document tree) but runs slow

compared to index-based solutions. (2) StructureSearch precomputes an index to answer top-k
subtree similarity queries fast once the index is ready. However, StructureSearch su�ers from a

2



large memory footprint that is quadratic in the size of the document tree (for deep trees). Fur-

thermore, StructureSearch must verify many subtrees to retrieve the �nal result, which results

in high runtimes even for small values of k . Finally, StructureSearch is tailored towards XML

documents and does not support index updates.

We propose a novel index-based solution called SlimCone that is based on the idea of a candi-
date score. Intuitively, subtrees with a high score are more likely to be close to the query tree in

terms of tree edit distance. �e candidate score is based on the tree labels, i.e., the score is high

if the query tree and the subtree share many labels. Processing the subtrees in non-decreasing

candidate score order provides two bene�ts: (1) It enables SlimCone to �nd good candidates

fast. (2) Our algorithm can stop early because the candidate score implies a lower bound on

the tree edit distance, i.e., none of the remaining subtrees will improve the ranking. Since the

query is unknown when we build the index, we must establish the candidate score order on

the �y at query time. We introduce a novel technique that builds inverted lists over the labels

of the document tree. An inverted list of a particular label holds all subtrees that contain this

label. Lists are then partitioned based on the sizes of the subtrees, and partitions are processed

in the order of the best candidate score that can be found in this partition. Indexing all subtrees

will however require space that is quadratic in the size of the document tree (similar to Struc-

tureSearch). To this end, SlimCone introduces an incrementally updatable, linear-space index

structure that builds relevant partitions of the lists on the �y, and we show how to generate the

partitions with minimum performance overhead. In our experimental evaluation, we observe

that SlimCone clearly outperforms both TASM-Postorder and StructureSearch with respect to

memory usage, index build time, number of veri�ed subtrees, and query runtime.

For this publication, we created a reproducibility package that has been awarded with the

“Results Replicated” label by the ACM SIGMOD 2020 Reproducibility program commi�ee. �e

“Results Replicated” label indicates that the program commi�ee has independently obtained

experimental results that support the main results of the paper.

Density-Based Clustering for Large Collections of Sets

Authors Daniel Kocher, Nikolaus Augsten, and Willi Mann.

Title Scaling Density-Based Clustering to Large Collections of Sets.

Venue Int. Conf. on ExtendingDatabase Technology (EDBT), Nicosia. OpenProceedings.org, 2021.

Thesis Ref. Chapters 3 and 4.

Finding so-called clusters in a given collection of data items is an important operation in

database systems. One popular clustering technique is the DBSCAN (Density-Based Spatial

Clustering of Applications with Noise) algorithm with numerous applications, for example, in

biology, image processing, or process mining. �e DBSCAN algorithm is based on the notion

of density and identi�es clusters as dense regions that are separated by low-density regions.

Given a distance function between pairs of data points, the DBSCAN algorithm uses the con-

cept of neighborhoods. For a particular data point r , the neighborhood contains all data points
that are within a given distance (or radius). �e clustering is then controlled using two input

parameters: ϵ denotes the radius (i.e., the maximum distance) for other data points to be neigh-

bors of r , and minPts speci�es the minimum number of data points for a neighborhood to be

dense. A data point with a dense neighborhood is called core point, a data point that is not core
but in the neighborhood of a core point is a border point, and all other data points are noise.
�e standard DBSCAN algorithm (randomly) picks a seed point r from the set of unvisited

data points. If r is a core point, then a new cluster is formed by recursively expanding all neigh-

bors of r (i.e., all neighbors of r are assigned to the new cluster and are expanded in the same

manner in case they are core). A cluster is fully identi�ed when all core points in a cluster have

been expanded. �e DBSCAN algorithm imposes a partial processing order on the neighbor-

hood computations (neighbor by neighbor). To �nd the clusters fast, the neighborhoods must

3



be computed e�ciently. In our experiments, the neighborhood computation accounts for up

to 99% of the overall runtime for some datasets.

In our publication, we consider density-based clustering for large collections of sets under

Hamming distance constraints. Sets are o�en used as a representation of complex data items,

and the Hamming distance can be used to assess the similarity of two sets based on the overlap-

ping set elements (called tokens). �e standard DBSCAN algorithm relies on a symmetric index,
i.e., an index structure that reports the complete ϵ-neighborhood for a given set r . However,
the most e�ective index structures for sets have been shown to be asymmetric. An asymmet-

ric index assumes a processing order on the sets (typically based on the set sizes) and reports

only the so-called lookahead neighbors of r , the neighbors that follow r in the processing order.

Asymmetric indexes are clearly superior in terms of e�ectiveness compared to their symmetric

counterparts, but are incompatible with the neighbor-by-neighbor order of the DBSCAN algo-

rithm. We identify three issues that arise for the DBSCAN algorithm with asymmetric indexes:

(1) �e lookahead neighbors of data point r are insu�cient to determine its core status. (2) We

may wrongly classify a border point as noise because the lookahead neighbors only contain

a speci�c part of the complete neighborhood. (3) Clusters may be disconnected because the

DBSCAN algorithm expands all core points of the current cluster and relies on the complete

neighborhoods (but we only see the lookahead neighbors).

Consequently, there are two options, none of which is satisfying: (1) Sym-Clust executes
the DBSCAN algorithm with a symmetric index to retrieve the complete ϵ-neighborhoods,
which has a small memory footprint but is slow because many sets must be evaluated. (2) Join-
Clust leverages an asymmetric index in a self-join but must materialize the (quadratic-size)

neighborhoods in main memory to execute DBSCAN on top, which is fast but infeasible for

many datasets due to the large memory footprint.

We propose Spread, the �rst DBSCAN-compliant algorithm that uses asymmetric indexes in

linear space. Spread is able to provide the e�ciency of the join-based solution by imposing

a speci�c processing order and leveraging the e�ective asymmetric index. At the same time,

Spread avoids the materialization of the (quadratic-size) neighborhoods using two key data

structures: Backlinks are dynamic collections of references that store enough information to

build DBSCAN-compliant clusters (independently of the processing order) and require only

O (n) additional space (for a dataset with n data points). Furthermore, we use a disjoint-set

data structure to maintain a graph of subclusters. �e connected components in this graph

then form DBSCAN-compliant clusters. Our experiments on 13 real-world datasets suggest

that Spread is as fast as Join-Clust while being competitive with Sym-Clust in terms of memory.

�e Spread algorithm has already shown to have industry impact: It has been implemented

into the database back end at Celonis SE, a Munich-based company that develops the market-

leading so�ware in the processmining domain. For further practical impact, we have developed

and evaluated an extension of Spread to multi-core environments, calledMC-Spread. For a total
number of k+1 concurrent threads, MC-Spread usesk threads to compute lookahead neighbors

and one thread to build the clusters. �e neighborhoods are stored in a shared array, and

the neighborhood threads notify the clustering thread when a neighborhood is available. �e

clustering thread processes and frees the lookahead neighborhoods as they become available,

respecting the user-de�ned processing order. We also introduce a memory-constrained version

of MC-Spread that e�ectively bounds the memory the neighborhood threads are allowed to

consume. �is mitigates a (possibly) large memory footprint of MC-Spread, which may occur

if the neighborhood threads allocate memory much faster than the clustering thread frees it. In

our experiments, we evaluate MC-Spread against a multi-core extension of the materialization-

based Join-Clust, and observe that MC-Spread scales be�er with the number of cores in terms

of runtime. We also discuss dataset characteristics that a�ect the scalability of both solutions.

We plan to submit the multi-core extension to a peer-reviewed journal in mid 2021.

4



Conclusions

Similarity queries are an important class of queries in database systems. A similarity query

evaluates similarity predicates that typically compare data items based on some similarity func-

tion. Similarity functions o�en introduce additional complexity and render standard querying

techniques (e.g., hashing) impracticable. In this dissertation, we studied two speci�c types

of similarity queries, namely top-k subtree similarity queries for ordered labeled trees and

density-based clustering for collections of sets. For each query type, we proposed specialized

index structures and algorithms, which advance the state of the art.

A top-k subtree similarity query �nds and ranks the k subtrees in a large document tree

that are most similar to a given query tree. We focused on ordered labeled trees and used the

tree edit distance as a black box to assess the similarity of two trees. Existing solutions are

either slow with a small memory footprint or fast with a large memory footprint. We proposed

SlimCone, the �rst updatable linear-space index structure for this query type. �e index is

based on inverted lists and allows us to retrieve promising subtrees �rst. We achieve linear

space by building relevant parts of the lists on the �y (rather than materializing the full lists

upfront). Our experiments con�rm the superiority of our solution in terms of memory usage,

index build time, query time, and number of veri�ed subtrees.

Density-based clustering identi�es high density regions as clusters that are separated by

regions of lower density. �e popular DBSCAN algorithm (randomly) picks unprocessed data

points and recursively expands dense neighborhoods until a low-density neighborhood is found.

We studied density-based clustering for collections of sets and the Hamming distance. For sets,

the most e�ective indexes are asymmetric, i.e., only a speci�c part of the complete neighbor-

hood is returned, the lookahead neighbors. �us, asymmetric indexes cannot be readily com-

bined with the DBSCAN algorithm (which imposes a partial neighbor-by-neighbor processing

order). Instead, the DBSCAN algorithm must rely on symmetric indexes. Contrarily, a solu-

tion based on a self-join can use asymmetric indexes but must materialize the (quadratic-size)

neighborhoods in main memory. We proposed Spread, the �rst DBSCAN-compliant linear-

space solution that is able to leverage asymmetric indexes for sets. Spread imposes a speci�c

processing order and only materializes one lookahead neighborhood at a time. We introduced

backlinks and used a disjoint-set data structure to derive a DBSCAN-compliant clusteringwhile

leveraging asymmetric indexes. Our experiments suggest that Spread combines the best of the

two worlds: It is competitive with the join-based solution in terms of runtime and retains the

memory e�ciency of the DBSCAN algorithm. We �nally developed, implemented, and evalu-

ated a multi-core extension of Spread.

References

[1] Daniel Kocher and Nikolaus Augsten. “A Scalable Index for Top-k Subtree Similarity

�eries”. In: Proceedings of the 2019 International Conference on Management of Data. SIG-
MOD ’19. Amsterdam,Netherlands: Association for ComputingMachinery, 2019, pp. 1624–

1641. isbn: 9781450356435. doi: 10.1145/3299869.3319892. url: https://doi.org/
10.1145/3299869.3319892.

[2] Daniel Kocher, Nikolaus Augsten, and Willi Mann. “Scaling Density-Based Clustering to

Large Collections of Sets”. In: Proceedings of the 24rd International Conference on Extend-
ing Database Technology, EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021. OpenProceed-
ings.org, 2021. isbn: 978-3-89318-084-4.

[3] Mateusz Pawlik et al. “A Link is not Enough - Reproducibility of Data”. In: Datenbank-
Spektrum 19.2 (2019), pp. 107–115. doi: 10.1007/s13222-019-00317-8. url: https:
//doi.org/10.1007/s13222-019-00317-8.

5

https://doi.org/10.1145/3299869.3319892
https://doi.org/10.1145/3299869.3319892
https://doi.org/10.1145/3299869.3319892
https://doi.org/10.1007/s13222-019-00317-8
https://doi.org/10.1007/s13222-019-00317-8
https://doi.org/10.1007/s13222-019-00317-8

