
Scalable Similarity �eries over
Complex Data

Daniel Kocher
00926293

Cumulative dissertation submitted to the Faculty of Natural
Sciences of the Paris-Lodron University of Salzburg in partial
ful�llment of the requirements for the doctoral degree
“Doktor der technischen Wissenschaften (Dr. techn.)”.

Supervisor: Univ.-Prof. Dipl.-Ing. Nikolaus Augsten, Ph.D.
Co-Supervisor: Assoc.-Prof. Dr. Ana Sokolova
Department of Computer Sciences
Paris-Lodron University of Salzburg

Salzburg, February 22, 2021

To my family.

A B S T R A C T

Our goal is to study and advance the e�cient evaluation of similarity queries for
complex data. In this thesis, we focus on two types of similarity queries: (1) top-
k subtree similarity queries for trees and (2) density-based clustering for sets. A
similarity query evaluates predicates that are based on some notion of similarity rather
than equality, e.g., two data items are compared using a similarity function such
as the overlap similarity for sets or the tree edit distance for trees. The similarity
predicates, however, introduce additional complexity during query evaluation and
prohibit the usage of standard techniques (like hashing or sorting) to evaluate the
respective operators. We develop new index structures and algorithms that are tailored
to similarity predicates.

The top-k subtree similarity query retrieves the k subtrees in a large document
tree that are most similar to a given query tree. The similarity between two trees
is assessed using the well-known tree edit distance. Previous solutions are either
memory-e�cient but slow (i.e., scan the entire document for each query) or fast but
require quadratic space in the input size (i.e., an index is built to answer queries fast).
We present SlimCone, a solution that is based on a linear-space index and allows to
retrieve promising subtrees �rst. Promising subtrees share many node labels with the
query tree. SlimCone avoids quadratic space by building relevant parts of the index on
the �y. In our experiments on synthetic and real-world data, SlimCone outperforms the
state of the art with respect to runtime by up to four orders of magnitude. Furthermore,
SlimCone outperforms the index-based solution in terms of memory usage, indexing
time, and the number of inspected subtrees.
Density-based clustering is a technique to partition data into clusters, i.e., dense

regions that are separated by low-density regions. The popular DBSCAN algorithm
recursively expands dense neighborhoods until a low-density neighborhood is reached.
It relies on symmetric indexes, i.e., indexes that return all neighbors for a particular
point independently of the processing order. For sets, however, the most e�cient
indexes are asymmetric. An asymmetric index assumes a processing order and returns
only a speci�c part of the neighborhood (all unprocessed neighbors). Thus, they cannot
be used in DBSCAN. A baseline that precomputes and materializes all neighbors before
executing DBSCAN su�ers from a large memory footprint (quadratic in the input size).
To the best of our knowledge, we develop the �rst DBSCAN-compliant solution for
sets. Our Spread algorithm uses asymmetric indexes and requires only linear space.
Spread imposes a processing order on the sets and uses backlinks that keep su�cient
information to derive a correct clustering. In our experiments, Spread is competitive
with the materialization-based solution in terms of runtime and retains the memory
e�ciency of DBSCAN. We also present MC-Spread, an extension of Spread to multi-
core environments. In our experiments, MC-Spread scales well with the number of
cores for datasets with small neighborhoods that are expensive to compute.

iii

A C K N O W L E D G M E N T S

First and foremost, I owe my deepest gratitude to my supervisor Nikolaus Augsten
who encouraged me to pursue a Ph.D. He introduced me to database research and
similarity search, and supported me and my work over the years. His patience, guidance,
encouragement, thoroughness, empathy, �exibility, and high research standards were
indispensable. Moreover, I would like to thank my co-supervisor Ana Sokolova.

I am also grateful to my colleagues Thomas Hütter (in particular), Mateusz Pawlik,
Willi Mann, Bezaye Tesfaye, and Martin Schäler for the numerous worthwhile discus-
sions and the valuable support during my studies. I would also like to acknowledge the
contributions of Alexander Miller, Manuel Kocher, Daniel Ulrich Schmitt, Konstantin
Thiel, and Manuel Widmoser to the projects in collaboration with Celonis SE. Fur-
thermore, I thank Nikolaus Augsten and Willi Mann for initiating the projects. The
great results would not have been possible without you. Likewise, I thank Alfred Egger
for his continuous technical support, and Judith Warter for her administrative and
personal support throughout the years.

I would like to thank all my friends for their support during my studies although I
had little spare time to spend with them. In particular, I would like to thank Christian,
Stefan, Heiko, and Evelyn. Your encouragement and support were irreplaceable.

Finally, I would like to express my deepest gratitude to my parents Silvia and Chris-
tian, my stepfather Kurt, my siblings Cornelia, Romi, and Manuel, and my grandparents
Wilhelmine, Karoline, and Heinz. This thesis would not have been possible without
your love, faith, and continuous support.

This work was partially supported by the Austrian Science Fund (FWF): P 29859.

v

C O N T E N T S

Abstract iii
Acknowledgments v
List of Figures ix
List of Tables xi
List of Algorithms xii
1 introduction 1

1.1 Objective of this Thesis . 1
1.2 Similarity Queries . 2
1.3 Data Representation & Similarity Functions 6

1.3.1 Trees & the Tree Edit Distance 6
1.3.2 Sets & Set Similarity . 8
1.3.3 Practical Use Case . 12

1.4 Contributions . 13
1.4.1 Scalable Top-k Subtree Similarity Queries 13
1.4.2 Density-Based Clustering for Sets 14
1.4.3 Reproducibility . 14

1.5 Thesis Outline . 15
2 a scalable index for top-k subtree similarity qeries 17

2.1 Introduction . 17
2.2 Notation, Background, and Problem Statement 19
2.3 E�ective Candidate Generation . 21
2.4 Index and MergeAll Algorithm . 23

2.4.1 Candidate Index . 23
2.4.2 MergeAll Algorithm . 25

2.5 Cone: Partition-Based Traversal . 29
2.6 Linear Space Index and SlimCone . 32

2.6.1 Indexing in Linear Space . 32
2.6.2 The SlimCone Algorithm . 33

2.7 E�cient Index Updates . 37
2.8 Related Work . 41
2.9 Empirical Evaluation . 42

2.9.1 Setup & Datasets . 42
2.9.2 Indexing . 44
2.9.3 E�ectiveness and Query Time 45

2.10 Conclusion . 48
3 scaling density-based clustering to large collections of sets 51

3.1 Introduction . 51
3.2 Background & Problem De�nition . 54

3.2.1 Set Similarity and ϵ-Neighborhood 54
3.2.2 Indexing Techniques for Sets 55

vii

viii contents

3.2.3 Density-Based Clustering . 56
3.2.4 The DBSCAN Algorithm . 57
3.2.5 Problem Statement . 57

3.3 Baseline Approaches . 58
3.3.1 Sym-Clust: DBSCAN with Inverted Index 58
3.3.2 Join-Clust: Materialized Neighborhoods 60

3.4 The Spread Algorithm . 62
3.4.1 Key Challenges . 62
3.4.2 Data Structures . 64
3.4.3 The Algorithm . 64
3.4.4 Correctness . 65
3.4.5 Complexity Analysis . 67

3.5 Experimental Evaluation . 68
3.5.1 Index & Cluster Statistics . 69
3.5.2 Runtime E�ciency . 69
3.5.3 Memory E�ciency . 70
3.5.4 Scalability . 73

3.6 Related Work . 74
3.7 Conclusion . 75

4 a multi-core solution for density-based clustering of sets 77
4.1 Preliminaries . 78
4.2 A Simple Multi-Core Extension of Spread 80
4.3 Re�ning the Simple Algorithm . 81

4.3.1 Idle Clustering Thread . 81
4.3.2 Cache Misses and False Sharing 82
4.3.3 Controlling the Memory . 83

4.4 Multi-Core Spread . 84
4.5 Multi-Core Join-Clust . 87
4.6 Experimental Results . 88
4.7 Conclusion & Outlook . 98

5 conclusions & future work 101
a reproducibility package 105

a.1 Hardware, Operating System, and Software 105
a.2 Quick Start . 105
a.3 Reproducibility Package . 106

a.3.1 Datasets, Queries, and Results 106
a.3.2 Package Details . 106

a.4 Flexibility . 108
a.4.1 Parameters . 108
a.4.2 Plots . 109

a.5 Time Estimates . 109
Bibliography 110

L I S T O F F I G U R E S

Figure 1.1 Three di�erent data items that represent the same address
“500 S Buena Vista St, Burbank, CA 91521”. 3

Figure 1.2 Types of similarity queries studied in this thesis. 4
Figure 1.3 Signature-based inverted list index for eight data items. Two

signatures are generated per data item, resulting in �ve distinct
signatures over all data items. 5

Figure 1.4 Ordered vs. unordered labeled trees. 7
Figure 1.5 The node edit operations between ordered labeled trees. . . . 7
Figure 1.6 Example text as binary vector and set. 9
Figure 1.7 Pre�x �ltering exempli�ed for two sets, r and s , and a pre�x

length of 3. 11
Figure 1.8 Example process and its representations. 12
Figure 2.1 Running example. 22
Figure 2.2 Baseline index structure for document T of our running ex-

ample (cf. Figure 2.1). 24
Figure 2.3 Worst-case document for the inverted list index (root to the

left, leaf to the right). 24
Figure 2.4 Stripes and partitions w.r.t. query Q 25
Figure 2.5 MergeAll after processing stripes j = 2. 27
Figure 2.6 Cone traversal of the inverted list index in candidate score order. 30
Figure 2.7 Processed subtrees of Cone. 32
Figure 2.8 Linear-space index for example document T 34
Figure 2.9 Finding the starting point of a slim list. 35
Figure 2.10 Slim lists, path caches, and path ends. 36
Figure 2.11 Index update example. 40
Figure 2.12 Build time, index size, and update time. 45
Figure 2.13 Merge, Cone, Slim: Query time and number of veri�cations

over document size, k = 10, |Q | = 16. 46
Figure 2.14 State of the art vs. Slim: Query time and number of veri�ca-

tions over document size, k = 10, |Q | = 16. 46
Figure 2.15 State of the art vs. Slim: Query time and number of veri�ca-

tions over query size |Q |, k = 10. 47
Figure 2.16 State of the art vs. Slim: Query time and number of veri�ca-

tions over varying result size k , |Q | = 16. 48
Figure 3.1 Symmetric candidates with ϵ-neighbors (blue); asymmetric

candidates with lookahead neighbors (red). 53
Figure 3.2 Symmetric and asymmetric pre�x index, ϵ = 3. 55
Figure 3.3 Running example, ϵ = 3, minPts = 4. 58
Figure 3.4 Redundant neighborhood queries. 59

ix

x list of figures

Figure 3.5 Symmetric pre�x index on r1-r10, ϵ = 3, π = 4. 60
Figure 3.6 Asymmetric pre�x index on r1-r10, ϵ = 3, π i = 2. 60
Figure 3.7 Runtime over ϵ , minPts = 16. 71
Figure 3.8 Runtime over minPts, ϵ = 3. 71
Figure 3.9 Runtime over data size, ϵ = 3, minPts = 16. 71
Figure 3.10 Main memory over ϵ , minPts = 16. 72
Figure 3.11 Main memory over minPts, ϵ = 3. 72
Figure 3.12 Main memory over data size, ϵ = 3, minPts = 16. 73
Figure 3.13 Backlinks peak over ϵ , minPts = 16. 73
Figure 3.14 Backlinks peak over minPts, ϵ = 3. 73
Figure 4.1 Wallclock time for CELONIS1, KOSARAK, and FLICKR, ϵ = 3,

minPts = 16. 82
Figure 4.2 CPU cycles for CELONIS1, KOSARAK, and FLICKR, ϵ = 3,

minPts = 16. 82
Figure 4.3 Cache misses for CELONIS1, KOSARAK, and FLICKR, ϵ = 3,

minPts = 16. 83
Figure 4.4 Wallclock time over the number of cores, ϵ = 2, minPts = 16. . 90
Figure 4.5 Wallclock time over the number of cores, ϵ = 3, minPts = 16. . 91
Figure 4.6 Wallclock time over the number of cores, ϵ = 4, minPts = 16. . 91
Figure 4.7 Wallclock time over the number of cores, ϵ = 5, minPts = 16. . 92
Figure 4.8 Main memory over the number of cores, ϵ = 2, minPts = 16. . 94
Figure 4.9 Main memory over the number of cores, ϵ = 3, minPts = 16. . 94
Figure 4.10 Main memory over the number of cores, ϵ = 4, minPts = 16. . 95
Figure 4.11 Main memory over the number of cores, ϵ = 5, minPts = 16. . 95
Figure 4.12 CPU cycles for CELONIS1, KOSARAK, and FLICKR, ϵ = 3,

minPts = 16. 96
Figure 4.13 Cache misses for CELONIS1, KOSARAK, and FLICKR, ϵ = 3,

minPts = 16. 96
Figure 4.14 Main memory over memory constraint, 8 cores, ϵ = 5, minPts

= 16. 97
Figure 4.15 Wallclock time over memory constraint, 8 cores, ϵ = 5, minPts

= 16. 97

L I S T O F TA B L E S

Table 1.1 Similarity resp. distance functions for two sets, r and s , and a
similarity resp. distance threshold t 11

Table 2.1 Notation overview. 21
Table 2.2 Example subtrees ordered by candidate score. 23
Table 2.3 Dataset characteristics. 43
Table 3.1 Notation overview. 57
Table 3.2 Characteristics of datasets. 68
Table 3.3 Index & cluster statistics for ϵ = 3, minPts = 16. 70
Table 4.1 Speedups (and the corresponding number of cores) for each

dataset and ϵ ∈ {2, 5} (NA . . . not available); speedup of algo-
rithm A is speedup(A) = 1-core time of A

max-core time of A 93

xi

L I S T O F A L G O R I T H M S

1 MergeAll(Q ,T ,k) . 28
2 Process-Subtree(Ti , lb,B) . 28
3 Verify-Bucket(B) . 28
4 Cone(Q ,T ,k) . 33
5 Process-List(lλ ,B) . 33
6 SlimCone(Q ,T ,k) . 38
7 Process-Smaller(lλ ,B) . 39
8 Process-Larger(lλ ,B) . 39
9 Materialize-Neighborhoods(R, ϵ) . 61
10 Create-Index (R, ϵ) . 61
11 Probe (r , I , ϵ) . 61
12 Verify-Pair (r , s , ϵ ,po) . 62
13 Spread(R, ϵ , minPts) . 66
14 MC-Spread(R, ϵ , minPts) . 84
15 Compute-Neighborhoods(R, ϵ , I , ln,next_id) 85
16 Probe-Notify(R, ϵ , I , ln, id) . 85
17 MC-Cluster(R, ϵ ,minPts , I , ln,next_id) 85
18 Cluster(r , minPts, ln,ds ,nc_bl , c_bl) . 86
19 MC-Materialize-Neighborhoods(R, ϵ) . 88
20 Compute-Pairs(R′, ϵ , I) . 88

xii

1
I N T R O D U C T I O N

Database systems must cope with an ever-growing amount of data and serve appli-
cations that require the storage and retrieval of complex data items. For example,
hierarchical or tree-structured data are used in bioinformatics [3, 5, 57], natural lan-
guage processing [77], and pattern recognition [68]; set-valued attributes are used to
represent objects from di�erent domains including tweets [82, 108], user groups [84], or
tags [23]. Database systems support a wide range of operators, and queries using these
operators must scale to large data corpora. One important class of queries are similarity
queries. Similarity queries evaluate similarity predicates that compare data items using
some notion of similarity instead of checking for equality [11]. The similarity of two
data items is assessed using a similarity function. Various similarity functions for
di�erent data types have been proposed, e.g., the edit distance for strings [75] and
trees [109], the Jaccard similarity for sets [61], or the Hamming distance for binary
vectors [52]. Well-known operators like the join operator can be extended to support
similarity predicates.

The similarity predicate introduces additional complexity into the evaluation of
the respective operator, and new challenges arise. For example, hash joins and sort-
merge joins, two well-known approaches to evaluate equality joins, cannot be readily
applied to compute a similarity join [10]. Therefore, specialized index structures and
algorithms must be developed to support e�cient and e�ective similarity queries in
database systems.

The remainder of this chapter is organized as follows. Section 1.1 presents the
objective of this thesis. In Section 1.2, we introduce similarity queries, the two query
types that are the focus of this thesis, and discuss a commonly used signature-based
�lter-veri�cation framework. We discuss selected representations of complex data
items (i.e., ordered labeled trees and sets), similarity functions, and a practical use case
from industry (among other application areas) in Section 1.3. Section 1.4 summarizes
the contributions of this thesis and points to published work of the author that was
not included into this thesis. Finally, Section 1.5 outlines the remainder of this thesis.

1.1 objective of this thesis

In this thesis, we study indexes and algorithms for similarity queries over complex data.
In particular, we focus on two popular query types: (1) The top-k subtree similarity
query for ordered labeled trees and (2) the density-based clustering of sets. The goal of
this thesis is to develop solutions that scale to large datasets with respect to runtime
and main memory consumption.

There are many representations to store complex data items in a database system, for
example, ordered labeled trees, binary vectors, or sets. So-called similarity or distance

1

2 introduction

functions can be used to assess the similarity between two data items of a particular
representation. The tree edit distance [109] is a widely used measure to assess the
similarity between two ordered labeled trees. Allowing three node edit operations, the
tree edit distance is de�ned as the minimum number of edit operations that transform
one tree into the other. In the case of binary vectors, the Hamming distance [52] is
a commonly used distance measure [78, 87, 110]. For sets, many di�erent similarity
functions such as the overlap similarity [130] or the Jaccard similarity [61] have been
proposed.

Similarity functions can be used in combination with various database operators
such as selections, sorting, or joins. A naive solution replaces the equality operator
with an operator that computes the similarity. In many scenarios, however, this results
in ine�cient queries because (i) distance/similarity functions are often computation-
ally expensive and/or (ii) representation-speci�c optimizations are not leveraged. (i)
Consider, for example, the current state-of-the-art solution AP-TED+ by Pawlik and
Augsten [91] for the exact tree edit distance. It runs in O (

n3) time and O (
n2) space

with n being the number of nodes in the tree, and has shown to be worst-case optimal.
A nested-loop join with the tree edit distance in the join predicate, however, is infeasible
for large collections of trees because the cubic distance algorithm must be executed
for each pair of trees [59]. (ii) Specialized index structures and processing techniques
often provide much faster runtimes, for example, in a set similarity join scenario [6, 16,
29, 36, 37, 45, 80, 81, 108, 122, 124, 130]. Furthermore, the scalability of a query may
be limited with respect to other dimensions, for example, a large memory footprint or
limited parallelism. The goal is to scale queries in all dimensions.

1.2 similarity qeries

Database systems store and organize large amounts of data such that users can query
the data. A database system aims to answer a given query e�ciently. From a user’s
perspective, a query should be answered almost in real time. Modern database systems
have to deal with large amounts of data. To this end, storing the data is not the only
problem but also providing good query performance for online transaction processing
(OLTP) and online analytical processing (OLAP) workloads [101]. Most database
systems are able to provide good performance for exact queries, i.e., queries that use
an equality predicate to compare two items in the database. A typical example for an
exact query is �nding a person by a unique number like the social security number.
Sometimes, however, it may be impossible to formulate an exact query that provides
the user with a satisfying answer. Consider, for example, a user that wants to �nd a
particular address in an address database. First of all, the same address may be stored
in di�erent variations, e.g., abbreviations can be used (“S Buena Vista Street” vs. “S
Buena Vista St”), dashes could be replaced by whitespaces (“Jakob-Haringer-Strasse”
vs. “Jakob Haringer Strasse”), or there may be typos (“S Buena Vista St” vs. “S Buema
Fista St”). Secondly, di�erent data items may refer to the same address due to their
internal representation [11]. Figure 1.1 shows three reasonable tree representations of
the same address “500 S Buena Vista St, Burbank, CA 91521”. Representation 1 contains

1.2 similarity qeries 3

one node per address part (split by “,”), whereas Representation 3 additionally splits
the numerical and textual components. Contrarily, Representation 2 simply stores the
entire address in a single node. An exact query �nds at most one of them, and none if
the representation of the query tree is not identical to one of these three representations.
Similarity queries aim to solve exactly this problem.

500 S
Buena

Vista St
Burbank CA 91521

Representation 1

500 S Buena Vista St,
Burbank, CA 91521

Representation 2

500

S Buena
Vista St

Burbank CA

91521

Representation 3

Figure 1.1: Three di�erent data items that represent the same address “500 S Buena Vista St,
Burbank, CA 91521”.

In contrast to an exact query, a similarity query uses a similarity predicate to match
data items. Typical similarity predicates include similarity functions or distance func-
tions. The complexity of a similarity function di�ers depending on the representation
of the data, e.g., comparison of trees with the exact tree edit distance requires cu-
bic time [91], whereas the overlap between (sorted) sets can be computed in linear
time [81]. Relevant data representations and popular similarity functions are discussed
in Section 1.3.

types of similarity qeries Among the most popular types of similarity
queries are range, nearest neighbor, and ranking queries. Given an attribute A and
two boundaries L and U (lower and upper), a range query retrieves all data items for
which the attribute is within the lower and upper end, i.e., L ≤ A ≤ U holds [101]. For
example, a user can ask for all addresses with a house number between 500 and 600.
One speci�c type is the ϵ-range (or region) query, which �nds all data items (i.e., an
arbitrary number of data items) that satisfy a given similarity threshold, ϵ , with respect
to a given reference item and a particular similarity function [101]. Neighboring data
items are said to be neighbors or in the neighborhood. Instead, nearest neighbor queries
aim to �nd the data item that is most similar to a given reference item and a speci�c
similarity function (i.e., its nearest neighbor) [101]. For example, a user can ask for the
street name in Los Angeles that is most similar to “S Buena Vista St”. One generalization
of the nearest neighbor query is the k-nearest neighbor (k-NN) query, which �nds the k
most similar neighbors (instead of only a single, most similar neighbor) [39]. Finally, a
ranking query retrieves data items in a particular order that re�ects the similarity of the
data items with respect to a given reference item. If the number of ranked data items is
further restricted by a user-de�ned numeric value, k , this is called top-k query [60].
It ranks up to k data items that are most similar to a given reference item (typically

4 introduction

in ascending similarity to the reference item). For example, a user can ask a database
system to rank the 10 street names that are most similar to “S Buena Vista St”.

This thesis covers two speci�c types of similarity queries, namely (1) top-k subtree
similarity queries for ordered labeled trees and (2) density-based clustering for sets.

(1) A top-k subtree similarity query �nds and ranks the k most similar subtrees in
a large tree database with respect to a given reference tree [8, 31]. Figure 1.2a shows
the principle of a top-k subtree similarity query for k = 3: The query returns three
trees (blue, orange, red) of the tree database that are most similar to the reference tree
(green). Tree representation and the comparison of trees are covered in Section 1.3.1.

(2) Density-based clustering partitions a collection of data items into dense regions,
so-called clusters, that are separated by regions of low density [40, 100]. The user has
to specify two input parameters, minPts and ϵ : (i) minPts is the minimum number of
data items in a neighborhood to consider it be dense, and (ii) ϵ is the radius of the
neighborhood, i.e., the similarity threshold for the respective ϵ-range query. Typically,
ϵ-range queries are used to identify data items that satisfy the density requirement, i.e.,
data items that have at least minPts neighbors within a radius of ϵ are in a dense region.
These data items are then recursively expanded until a data item with less than minPts
neighbors is encountered [40]. Figure 1.2b shows the intuition of the density-based
clustering operation: Given a collection of data items in 2D space (for simplicity), there
are three dense regions (red, green, blue) and a region of low density (gray). Each dense
region forms a cluster, and data items in the low-density region are noise, i.e., they are
considered irrelevant.

reference tree

top-3

tree database
3.
2.
1.

Ranking:

(a) Top-k subtree similarity query.

. . .cluster 1

. . .cluster 2
. . .cluster 3
. . .noise

(b) Density-based clustering.

Figure 1.2: Types of similarity queries studied in this thesis.

index structures & framework Index structures (or indexes) are a key com-
ponent of database systems to o�er good performance. On a high level, an index is
a data structure that provides shortcuts to data items a query has to �nd. For many
algorithms the index is a black box that takes a request and returns all data items that
satisfy the request. An example request is to �nd all data items that represent a speci�c
street in Los Angeles. In the context of this thesis, we focus on signature-based inverted
list indexes, which are at the core of our solutions.

A signature-based inverted list index (inverted index, for short) computes a signature
for every data item. A signature function maps a data item to one or multiple (numer-
ical) hash values. A typical approach in similarity search is (i) to compute multiple

1.2 similarity qeries 5

signatures for each data item and (ii) to design the signature function such that two
similar data items share at least one signature [16, 130]. The inverted index maintains
one list per signature. The inverted list of a particular signature siдi stores all data items
that produce siдi . This organization simpli�es �nding all data items for a particular
signature siдi as it only requires a single lookup (typically done in constant time). In
Section 1.3.2, we brie�y discuss common signatures for set similarity algorithms.

The indexes are used in a �lter-veri�cation framework [81], which is a common
algorithmic design pattern in similarity search. After building the index, we perform
the following steps to �nd items that are similar to a given data item d : (i) All signatures
for d are computed, denoted Siд(d) = {siд1, siд2, . . . , siдm}, |Siд(d)| =m. (ii) An index
lookup is performed for every signature siдi ∈ Siд(d), 1 ≤ i ≤ m. We say d is probed
against the index. The data items of all lists, lsiд1 to lsiдm , are collected (cf. Figure 1.3)
and form the candidates of d . The candidates may contain false positives, i.e., data
items that share a signature with d but are not similar to d . Notably, the candidates do
not contain false negatives, i.e., all data items similar to d appear in at least one list.
(iii) Each candidate is then veri�ed against d . The veri�cation procedure evaluates the
similarity predicate of the query (typically by computing a similarity function) and
discards the false positives. Candidates that pass the veri�cation procedure form the
�nal result.

Figure 1.3 shows an example dataset with eight data items, each of which generates
two signatures (resulting in a total number of �ve distinct signatures over all data
items). Consider, for example, data item d2 in Figure 1.3: d2 generates the signatures
siд2 and siд3 (this can be inferred from the fact that d2 appears in these lists). After
a lookup of these two lists, we get the candidates {d2,d3,d4,d7,d8} ∪ {d1,d2,d3} =
{d1,d2,d3,d4,d7,d8}, which must be veri�ed in order to eliminate false positives. Note
that d5 and d6 are not part of the candidates since they generate neither siд2 nor siд3.

siд1

d1

d5

d6

d8

siд2

d2

d3

d4

d7

d8

siд3

d1

d2

d3

siд4

d4

d6

siд5

d5

d7

Data items: {d1,d2, . . . ,d8} Signatures: {siд1, siд2, . . . , siд5}

Inverted list index:

Inverted list lsiд5 of data items
that generate signature siд5

Figure 1.3: Signature-based inverted list index for eight data items. Two signatures are generated
per data item, resulting in �ve distinct signatures over all data items.

6 introduction

1.3 data representation & similarity functions

Database systems are used in a wide range of applications, operating on di�erent types
of data. Internally, complex data items are often mapped to some abstract represen-
tation, e.g., hierarchical data are represented as trees [5, 19, 106, 136]. The similarity
function used in the similarity predicate is typically speci�c to the representation of
the underlying data. Furthermore, speci�c optimization and indexing techniques have
been developed for di�erent representations. In the course of this section, we cover
selected data representations as well as the corresponding similarity and distance func-
tions. We focus on exact techniques and do not discuss approximations, which have
been proposed for some types of similarity queries [13, 49, 128]. Finally, we discuss a
practical use case from industry.

1.3.1 Trees & the Tree Edit Distance

In this section, we discuss a typical representation of hierarchical data, the ordered
labeled tree, and a widely used similarity measure for trees, the so-called tree edit
distance.

ordered labeled trees Hierarchical data encodes hierarchical dependencies
between (parts of) data items. Application areas that use hierarchical data include,
among others, biology and bioinformatics [3, 5, 57], pattern recognition and image
analysis [17, 68], automatic information extraction [67, 97], and similarity queries [47,
59, 125]. Various data formats have been developed to represent hierarchical data,
e.g., XML [88], JSON [24], or the Asterix Data Model (ADM) [4]. Trees can be used to
represent hierarchical data in a database system. A tree T is a rooted, directed, acyclic,
connected graph with nodes V (T) and directed edges E(T) ⊆ V (T) ×V (T), where the
root node has no inbound edge and leaf nodes have no outgoing edges. Due to the
hierarchical nature of trees, an edge (u,v) ∈ E(T) represents a parent-child relationship
between the two nodes u and v , that is, u is the parent of v , and v is the child of u.
Nodesv1,v2, . . . ,vk that share a common parent are called siblings. A tree also consists
of transitive parent-child relationships: If a path from the root node to some node v
contains another node u, u , v , u is an ancestor of v , and v is a descendant of u. A
subtree Tu of T is a tree that is rooted at node u and consists of all descendants of u as
well as all edges that connect this subset of nodes in T .

A tree is called labeled if a label is associated with each node v ∈ V (T). Labels
carry the data of a node, e.g., a string or a numeric value. In this thesis we assume
node-labeled trees.

We distinguish ordered and unordered trees. In an unordered tree, the order of child
nodes does not matter, whereas ordered trees de�ne a strict, total order on the children
of a node [11]. As will be covered later in this section, the existence of an order heavily
a�ects the computational complexity of the tree edit distance. Figure 1.4 illustrates two
trees that represent the same point of interest (POI), but with di�erent child orderings
for the “Address” node. If we interpret the trees as unordered, trees T0 and T ′0 are

1.3 data representation & similarity functions 7

identical. If interpreted as ordered trees, however,T0 andT ′0 are not identical since they
di�er in the sibling order.

POI

Name

Walt
Disney
Studios

Address

500 S
Buena

Vista St
Burbank CA 91521

T0 POI

Name

Walt
Disney
Studios

Address

Burbank
500 S
Buena

Vista St
CA 91521

T ′0unordered
===

ordered
=,=

Figure 1.4: Ordered vs. unordered labeled trees.

tree edit distance The tree edit distance assesses the similarity of two ordered
(or unordered) labeled trees. For ordered labeled trees, the tree edit distance is based
on three node edit operations [136]: (1) Rename updates the label of a given node u.
(2) Delete removes a given node u and the children of u become children of its parent
(starting at u’s sibling position and retaining their order). (3) Insert embeds a new node
u between an existing node p and a consecutive (possibly empty) subsequence of p’s
children.

Figure 1.5 illustrates the node edit operations. Starting from the leftmost tree, we
follow the edit operations in order (1) to (4). (1) Renaming “500” to “700” changes the
label of a single node inT1, resulting in treeT2. (2) The deletion of “CA” fromT2 changes
the structure of the tree, i.e., the resulting treeT3 has one node less. (3) Inserting a node
with label “CA” in between “Address” and “91521” reverts this structural change, and
(4) renaming “700” to “500” results in the original tree, T1. We observe that insertion
and deletion are inverse (structural) operations.

Address

500

S Buena
Vista St

CA

91521

T1 Address

700

S Buena
Vista St

CA

91521

T2 Address

700

S Buena
Vista St

91521

T3

(1) rename “500” to “700” (2) delete “CA”

(3) insert “CA” between “Address” and “91521”(4) rename “700” to “500”

Figure 1.5: The node edit operations between ordered labeled trees.

Most tree edit distance algorithms decompose the input trees into smaller subtrees
and subforests based on a recursive formula. For ordered labeled trees, Tai [109]
proposed the �rst algorithm to compute the tree edit distance in O (

n6) time, where
n denotes the number of nodes in the larger of the two trees. Since then, the tree

8 introduction

edit distance was subject to many improvements. A popular algorithm was proposed
by Zhang and Shasha [136] in 1989, which improved the time and space complexity
to O (

n4) and O (
n2) , respectively. To date, the best known algorithm is AP-TED+

proposed by Pawlik and Augsten [91]. AP-TED+ is worst-case optimal and runs in
O (

n3) time and O (
n2) space. We refer to Pawlik and Augsten [91] for a detailed

description of AP-TED+. The tree edit distance for unordered labeled trees has been
shown to be NP-complete [137] and is out of the scope of this thesis.

Chapter 2 of this thesis presents a scalable solution to answer top-k subtree similarity
queries for ordered labeled trees under the tree edit distance. The tree edit distance
computation is used as a black box in this work, i.e., any algorithm can be used.

1.3.2 Sets & Set Similarity

Sets are a common representation of complex objects for the sake of similarity com-
putation, e.g., strings are modeled as sets of q-grams (substrings of length q) [117],
trees are represented as sets of pq-grams (subtrees of a particular form) [12], or text
documents are interpreted as sets of words [123]. This section covers sets and their
representation as binary vectors, revisits similarity measures for sets, and discusses
popular signatures that are used in algorithms for set similarity.

sets & binary vectors In general, a set is a group of unique elements in arbitrary
order (if elements are not unique, it is called multiset). In our context, a set often
represents a single data item, and an element of a set is commonly referred to as
token. For a collection of sets, R, the union of distinct tokens over all sets is called the
token universe, U , and the number of tokens in the token universe is the universe size,
|U |. Data from many diverse domains can be represented as sets [81], for example,
purchases in online shops (one token per product category) [138], image meta-data (one
token per tag) [23], online user behavior1 (one token per clicked link), user meta-data
(one token per user interest or group membership; one token per listened track or
watched movie) [84, 94], or business event logs (one token per transition between
two activities) [70]. In practice, the tokens of a set are often sorted with respect to
some total order that is consistent over all sets, e.g., with respect to the global token
frequency (GTF). Sorting the tokens simpli�es the comparison of sets and enables other
optimization techniques for set similarity algorithms [6, 29, 81, 130]. Typically, a set is
stored as a sequence of unique integer tokens, where an integer represents an element
in the set.
Binary vectors (also called bit vectors or bitmaps) are a common representation

method for sets [96, 118]. More formally, a binary vector can be interpreted as a hash
function that maps an arbitrary domain to the binary domain {0, 1}. E�ectively, a set
is then represented as a d-dimensional binary vector with d = |U |. A bit at position i is
(un)set if dimension i is (not) present in the data item. Although d might be large, one
rationale to represent sets as binary vectors is space because each dimension can be
expressed by a single bit. Furthermore, e�ective and e�cient compression techniques

1 http://fimi.uantwerpen.be/data/

http://fimi.uantwerpen.be/data/

1.3 data representation & similarity functions 9

for binary vectors have been developed (e.g., Roaring bitmaps [27, 28, 74] or tree-
encoded bitmaps [73]) and modern hardware provides very e�cient (advanced) bitwise
operations, which can be used to speed up the computation of similarity functions
for binary vectors (e.g., the POPCOUNT operation [103] to count the number of distinct
positions in two binary vectors). Semantically, binary vectors and sets can be used to
represent the same data item. Which representation to use in practice depends on the
population of a binary vector. For a large universe size and sparse binary vectors, the
set representation may require less memory compared to binary vectors. In a nutshell,
this is also the mechanism behind the Roaring bitmap compression technique [27, 28,
74]: Depending on the population characteristics of a binary vector, the data item is
stored di�erently, i.e., the binary vector is split into chunks of 216 bits and each chunk
is stored in the most memory-e�cient way (chosen from three possible representations,
including sets and plain binary vectors).

Figure 1.6 shows a common use case for binary vectors and sets: similarity queries in
texts. First, a tokenization is applied to the text, i.e., the text is split based on a particular
splitting policy. In this example, the text is split by whitespace and the tokenization
provides us with 17 string tokens (words). The universe size is the number of distinct
string tokens in the entire text, which is 15 in this example (“one” and “only” each appear
twice). Second, the string tokens in the universe are mapped one-to-one to unique
integers, e.g., “Lord” is mapped to 2 (denoted Lord→ 2). The string-to-integer mapping
is stored in a so-called translation table. Consider a binary vector for the highlighted
portion of the text “Lord of the Ring”. Each string token is mapped to an integer and the
corresponding bit in the binary vector of size 15 (universe size) is set. The equivalent
set representation {2, 4, 8, 9} is also shown in Figure 1.6. We typically store tokens in
their integer representation because integers are computationally cheaper to compare
than strings.

“There is only one Lord of the Ring, only one who can bend it to his will.”

. . . Lord 2 of 4 the 8 Ring 9 . . .

Translation table:

translate words

Binary vector: 0
0

0
1

1
2

0
3

1
4

0
5

0
6

0
7

1
8

1
9

0
10

0
11

0
12

0
13

0
14

Set: 2
0

4
1

8
2

9
3

derive binary vector/set

Figure 1.6: Example text as binary vector and set.

set similarity & distance functions Most similarity measures for sets
are based on the intersection between the tokens of the sets [11]. Two sets, r and
s , are considered similar if they share many tokens, i.e., the intersection |r ∩ s | is
large. Similarity functions are often normalized to the interval [0, 1], and similar sets

10 introduction

have a similarity value closer to 1 than non-similar sets. In the case of (normalized)
distance functions, which are also based on the set intersection |r ∩ s |, identical sets
have a distance of 0 (and the distance of dissimilar sets is close to 1). Typically, both
normalized and non-normalized similarity resp. distance functions are applicable in
the context of similarity queries. Table 1.1 summarizes popular set similarity and
set distance functions. The overlap similarity [130], O(r , s), computes the size of
the intersection |r ∩ s | and ranges from 0 (no shared token) to min{|r |, |s |} (identical
sets or subset relationship). Jaccard [61], Cosine [130], and Dice [38] similarity are
di�erent normalizations of the overlap similarity to the interval [0, 1], where 0 denotes
dissimilarity and 1 denotes identity. The Hamming distance [52] is a well-known
distance measure for binary vectors (of equal size) and denotes the number of bit
positions in which the vectors di�er. In the context of sets, the Hamming distance
denotes the number of tokens that exist in only one of the sets, and ranges from 0
(identical sets) to |r | + |s | (no shared token) [11]. Table 1.1 provides the de�nitions of
the various similarity and distance functions as well as the so-called equivalent overlap,
Eq. Overlap, and a size lower bound [6, 81], Min. Size, which are discussed below.
Moreover, the rightmost column, Norm., indicates whether the respective function is
normalized.

Many similarity search algorithms for sets are based on a similarity threshold. Set
similarity join algorithms, for example, aim to �nd all similar pairs in two collections of
sets, R and S , that exceed a given threshold t with respect to a user-de�ned similarity
function sim(r , s), i.e., the join result is {(r , s) | r ∈ R, s ∈ S , sim(r , s) ≥ t} [81]. Note
that (i) the similarity function can be any of the (normalized) similarity functions listed
in Table 1.1, but also the overlap similarity, O(r , s), and (ii) we can also use a distance
function (e.g., the Hamming distance) in combination with a minimum distance as
threshold, then the join result is {(r , s) | r ∈ R, s ∈ S ,H (r , s) ≤ t} for a given Hamming
distance threshold t .

Threshold-based algorithms for set similarity often translate the given similarity
threshold into an equivalent overlap that su�ces to decide whether two sets r and s

are similar. Computing the overlap between r and s is typically much cheaper than
computing the respective similarity function. Furthermore, the overlap computation
(during veri�cation) can stop once we know that |r ∩ s | is larger than or equal to the
required equivalent overlap [81]. This is due to the fact that we are not interested in
the true similarity of r and s , but we only want to know whether r and s satisfy the
given threshold. Likewise, the size lower bound (min. size) can be exploited by set
similarity algorithms: If the size di�erence of r and s is too large, then r and s cannot
satisfy the given similarity threshold [6]. Both equivalent overlap and size lower bound
often depend on the set size, i.e., they must be computed separately for each (pair of)
set(s) [81].

signatures for sets Various signature schemes for sets have been proposed.
An inverted index based on a particular signature scheme siдname is referred to as
siдname-based inverted index. For the discussion, we assume two sets r and s .

The pre�x [6, 29] is a simple but e�ective signature [81]. To compute the pre�x, the

1.3 data representation & similarity functions 11

Table 1.1: Similarity resp. distance functions for two sets, r and s , and a similarity resp. distance
threshold t .

Function Notation De�nition Eq. Overlap Min. Size Norm.
Overlap O (r , s) |r ∩ s | t t ×
Jaccard J (r , s) |r∩s |

|r∪s |
t

1+t (|r | + |s |) t · |r | X

Cosine C (r , s) |r∩s |√
|r | · |s |

t
√
|r | · |s | t2 · |r | X

Dice D (r , s) 2 |r∩s |
|r |+ |s |

t (|r |+ |s |)
2

t |r |
2−t X

Hamming H (r , s) |(r ∪ s) \ (r ∩ s)| |r |+ |s |−t
2 |r | − t ×

tokens of all sets must be sorted according to a total token order. The pre�x signature
considers the �rst πr tokens of a set r , and each individual token is a signature of r .
An e�ective heuristic is to order the tokens in ascending global token frequency [81,
130], i.e., infrequent tokens occur before frequent tokens. Consequently, the pre�x
contains infrequent tokens. Intuitively, this results in fewer candidates because the
chance of two sets sharing infrequent tokens is low. If the pre�xes of two sets r and s

do not share any token, then r and s cannot be similar. The length of the pre�x, πr , is
chosen such that the remaining non-pre�x tokens cannot satisfy the given threshold t

even if they are identical. The pre�x length typically depends on the set sizes and the
equivalent overlap of the similarity function [81, 130]. Since the equivalent overlap
may vary for each pair (r , s), the pre�x length may also vary for each pair of sets.

Figure 1.7 illustrates the pre�x �ltering principle for two sets, r and s , and a pre�x
length of 3 (which corresponds to an overlap threshold of t = 4, i.e., r and s are similar
if and only if |r ∩ s | ≥ t = 4). The pre�xes of r and s are highlighted in red and blue,
respectively. Assume that the non-pre�x tokens are unknown, denoted “?”. Due to the
global token order, we know that any unknown token in r is ≥ 9 and any unknown
token in s is ≥ 7. The maximum overlap is achieved if all unknown tokens of s �nd a
match in r , i.e., the maximum overlap is 3. Consequently, r and s are guaranteed to be
dissimilar since the pre�xes share no token. We refer to Xiao et al. [130] for a detailed
discussion on pre�xes and optimizations.

r: 1 4 8 ? ? ? s: 3 5 6 ? ? ?

t = 4 |r | = |s | = 6 Numerical token order: 1, 2, . . .

Figure 1.7: Pre�x �ltering exempli�ed for two sets, r and s , and a pre�x length of 3.

Another signature scheme partitions the tokens into non-overlapping subsets [37,
108], each of which is a signature of r . We refer to signatures generated by this scheme
as partition-based signatures. In a nutshell, this signature scheme uses a hash function
to map each individual token of r to a partition, and the tokens in a partition form a
signature (in practice, the partition identi�er is used as signature). If two sets r and s

are similar, they must share at least one signature. The given threshold t is typically
converted into an equivalent Hamming distance tH , and every signature of r that is not
in s (and vice versa) increases the Hamming distance of r and s by one. Consequently,

12 introduction

if this count exceeds tH , then r and s are dissimilar. The number of partitions and
the partition strategy depend on the set sizes and the similarity function [37]. Along
similar lines, k-wise signatures [123] that are based on a combination of tokens have
been proposed.

Finally, the signature scheme called CoveringLSH [86, 87, 93] is tailored to the
Hamming distance and was initially proposed for binary vectors. Interestingly, it can
be adapted to work for sets, which is bene�cial if the binary vectors are sparse. The
main advantage of CoveringLSH is that it produces signi�cantly fewer candidates for
some datasets as compared to the other signatures presented in this thesis. However,
this comes at the cost of a large memory footprint.

Chapter 3 of this thesis presents an e�cient solution to compute the density-based
clustering for collections of sets. Our solution is evaluated using a pre�x-based inverted
index and the Hamming distance. However, it generalizes to other set index structures
and any of the mentioned set similarity and set distance functions. Chapter 4 presents
an extension for multi-core systems.

1.3.3 Practical Use Case

Various application areas for binary vector and set representations exist, for example,
detecting joinable tables in data lakes [139], retrieving similar pairs of texts [114, 123],
or online click fraud detection [83]. In this thesis, we discuss one application scenario
from industry in more detail: trace clustering for process mining at Celonis SE. This
application scenario was the main motivation for our density-based clustering solution
presented in Chapter 3. Celonis SE is a software company based in Munich, Germany,
that develops the market-leading software in the domain of process mining. Process
mining aims to analyze and understand business processes based on event logs [1].
A process (or case) is represented as directed, timestamped graph of activities. In this
graph, a node represents an activity ai (i.e., an atomic part of the process) and an edge
(ai ,aj) from activity ai to activity aj implies that aj follows ai . To assess the similarity
of two processes, each distinct edge (ai ,aj) gets a unique identi�er, and a process is
stored as a multiset of edge identi�ers [1].

Start Purchase
1 Payment3 Delivery4

Return
5
6

Close
9

End
11

Process:

Edges: { (S,P), (P,Y), (Y, D), (D,R), (R,D), (D,R), (R,D), (D,C), (C,E) } tuple representation

Multiset: { 1, 3, 4, 5, 6, 5, 6, 9, 11 } { 1, 3, 4, 5, 6, 9, 11 }Set: integer representations

Figure 1.8: Example process and its representations.

Figure 1.8 shows an example process with seven activities: Start, Purchase, Payment,
Delivery, Return, Close, and End. The Start and End activities exist in every process,
and a process may contain loops. For example, a wrong or damaged order may be

1.4 contributions 13

returned and the replacement product is delivered (again), which results in a loop
between Delivery and Return. Typically, each distinct activity tuple is assigned a
unique integer, which enables e�cient comparison of edges. This is shown on the
bottom of Figure 1.8. Since an activity pair may appear multiple times in a process,
the resulting representation is a multiset. Whether multisets are transformed into sets
depends on the application. In our particular use case, we assume sets (i.e., tokens are
deduplicated).

A company may store distinct processes with identical sequences of activities. We
keep only a single representative of such processes, the so-called trace. The collection
of traces then may serve as an input to queries, for example, density-based clustering
(cf. Chapter 3).

1.4 contributions

E�cient and scalable similarity queries are at the core of this thesis. In particular, this
thesis focuses on two speci�c types of similarity queries: (1) Top-k subtree similarity
queries for trees and (2) density-based clustering for sets. For both query types, our
solutions have been published as peer-reviewed conference papers.

In addition to the technical and algorithmic contributions, reproducibility played an
important role for this work and resulted in the following artifacts: (i) A journal article
on data reproducibility (in collaboration with other members of the Database Research
Group at the University of Salzburg; not included in this thesis). (ii) A reproducibility
package of our solution to answer top-k subtree similarity queries. The contributions
can be summarized as follows.

1.4.1 Scalable Top-k Subtree Similarity Queries

The e�cient retrieval of the k most similar subtrees in a large document tree with
respect to a given query tree constitutes an important query type. This is referred to as
top-k subtree similarity query, where the trees are typically compared using the tree
edit distance. Previous solutions do either not use an index (and must therefore scan
the entire dataset) or build an index that is quadratic in the input size.

We developed a novel solution for this problem that is based on a linear-space index
structure. The index structure is organized as an inverted list index, but avoids full
materialization of the inverted lists in main memory (which would require quadratic
space). Instead, relevant parts of the full lists are built on the �y. Our clever traversal of
the index structure, called candidate score order, processes the most promising subtrees
�rst. As a consequence, our solution �nds the �nal result with a small number of tree
edit distance computations. This results in runtime improvements of up to four orders of
magnitude compared to the state of the art. Finally, our index is the �rst incrementally
updatable, linear-space index structure for top-k subtree similarity queries.

14 introduction

1.4.2 Density-Based Clustering for Sets

Density-based clustering is a widely used clustering technique with the DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) algorithm being the
most popular representative. DBSCAN is able to identify clusters of arbitrary shape,
which are dense regions that are separated by regions of low density. Clusters are
formed by recursively expanding dense neighborhoods until a low-density neighbor-
hood is reached (i.e., the number of neighbors falls below a given threshold). Thus,
DBSCAN imposes a partial order on the neighborhood computations and requires
so-called symmetric index structures to retrieve all neighbors of a particular data point.
Unfortunately, symmetric index structures are ine�cient compared to their asymmetric
counterparts.

To the best of our knowledge, we developed the �rst DBSCAN-compliant algorithm
that is able to use asymmetric indexes. Asymmetric indexes rely on a particular pro-
cessing order and retrieve only a speci�c part of all neighbors. Our solution imposes a
processing order that is compatible with asymmetric indexes and produces a DBSCAN-
compliant clustering. We compare our solution to a join-based approach, which also
uses asymmetric indexes but needs to materialize the neighborhoods in main memory.
In the worst case, the neighborhood materialization requires quadratic memory. In
contrast, our solution runs in linear space while exploiting the e�ectiveness of asym-
metric indexes. Our experiments suggest that our solution combines the best of two
worlds: it is competitive with the join-based solution in terms of runtime performance
and retains the memory e�ciency of the DBSCAN algorithm with symmetric index.

1.4.3 Reproducibility

Reproducibility of data and experiments constitutes an important part in computer
science research. Without reproducibility, other research groups may be unable to re-
produce previous experiments and this may prevent or delay future research. Therefore,
the Database Research Group at the University of Salzburg published a collaborative
work on data reproducibility, and a reproducibility package for our ACM SIGMOD
2019 paper (cf. Chapter 2) was created.

data reproducibility Pawlik, Hütter, Kocher, Mann, and Augsten. A Link is
not Enough - Reproducibility of Data. In Datenbank Spektrum 19, pages 107–115, June
2019. Springer.

Pawlik et al. [92] is a collaborative work of the Database Research Group at the
University of Salzburg on the problem of data reproducibility. In this work, we introduce
the RPI data reproducibility model that covers three elements of data reproducibility:
Given the raw data (R), preparation instructions (P) are used to derive the input data (I)
for an experimental evaluation. Only providing access to the raw data is not enough
and often prevents experiments from being reproduced. This work also consists of an
extensive review of related work and reproducibility e�orts in the database community,

1.5 thesis outline 15

legal and technical aspects of data availability, and best practice examples. Due to its
collaborative nature, this journal article is not part of this thesis.

reproducibility package The ACM SIGMOD conference has initiated a pro-
gram to promote reproducible papers2. Our reproducibility package has been accepted
to the ACM SIGMOD 2020 Reproducibility program. It executes all experiments of
our paper A Scalable Index for Top-k Subtree Similarity Queries [69] (cf. Chapter 2) and
recompiles the paper sources with the new results. The report of our reproducibility
package is included in Appendix A.

1.5 thesis outline

This thesis is organized as a collection of conference papers. Chapters 2 and 3 are
self-contained, and all experimental results can be found in the respective chapters.
Chapter 4 extends the results of Chapter 3 to multi-core environments and has not yet
been published. The bibliography for all chapters is provided at the end of this thesis.

chapter 2 A Scalable Index for Top-k Subtree Similarity Queries

Daniel Kocher and Nikolaus Augsten. A Scalable Index for Top-k Subtree Simi-
larity Queries. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD), pages 1624–1641, Amsterdam, Netherlands, July 2019. ACM.

chapter 3 Scaling Density-Based Clustering to Large Collections of Sets

Daniel Kocher, Nikolaus Augsten, and Willi Mann. Scaling Density-Based Clus-
tering to Large Collections of Sets. In Proceedings of the 24th International Con-
ference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, March
2021. OpenProceedings.org. Accepted.

chapter 4 A Multi-Core Solution for Density-Based Clustering of Sets

This chapter extends the results of Chapter 3 to multi-core environments and
includes algorithms as well as experimental results.

2 https://reproducibility.sigmod.org/

https://reproducibility.sigmod.org/

2
A S C A L A B L E I N D E X F O R T O P - K S U B T R E E S I M I L A R I T Y Q U E R I E S

authors Daniel Kocher and Nikolaus Augsten
venue ACM SIGMOD, Amsterdam, 2019

abstract

Given a query tree Q , the top-k subtree similarity query retrieves the k subtrees in a
large document tree T that are closest to Q in terms of tree edit distance. The classical
solution scans the entire document, which is slow. The state-of-the-art approach
precomputes an index to reduce the query time. However, the index is large (quadratic
in the document size), building the index is expensive, updates are not supported, and
data-speci�c tuning is required.

We present a scalable solution for the top-k subtree similarity problem that does not
assume speci�c data types, nor does it require any tuning. The key idea is to process
promising subtrees �rst. A subtree is promising if it shares many labels with the query.
We develop a new technique based on inverted lists that e�ciently retrieves subtrees
in the required order and supports incremental updates of the document. To achieve
linear space, we avoid full list materialization but build relevant parts of a list on the
�y.

In an extensive empirical evaluation on synthetic and real-world data, our technique
consistently outperforms the state-of-the-art index w.r.t. memory usage, indexing time,
and the number of candidates that must be veri�ed. In terms of query time, we clearly
outperform the state of the art and achieve runtime improvements of up to four orders
of magnitude.

2.1 introduction

Data with hierarchical structure are naturally represented as trees. A tree stores data
values in node labels and encodes the relation between the values in the structure
(e.g., text values and element nesting in XML). We consider applications that, given
an example tree (the query), are interested in subtrees of a large document tree that
are similar to the query. An example is the abstract syntax tree of a large software
project [44, 102]: In order to avoid code duplication or detect code moves, software
engineers are interested in �nding all code fragments (i.e., subtrees of the abstract
syntax tree) that are similar to a given example fragment. In RNA secondary structures
(which are represented as ordered, labeled trees [3, 56]), biologists search for similar
foldings of RNA subsequences. To automatically extract product information from
the web, the similarity of substructures in web pages are leveraged [119]. Production

17

18 a scalable index for top-k subtree similarity qeries

engineers retrieve components with similar building plans from bills of materials,
which form trees that may consists of millions of nodes [46, 65].

We study top-k subtree similarity queries: given a large document treeT and a (small)
query tree Q , �nd the k most similar subtrees in T w.r.t. Q . Two trees are similar if
their edit distance [136], a common tree similarity measure, is small. The edit distance
between two ordered labeled trees is de�ned as the minimum number of node edit
operations (insertion, deletion, rename) that transform one tree into the other.

Previous solutions for top-k subtree similarity queries fall into two categories: index-
based and index-free algorithms. TASM-Postorder [8] is the fastest index-free algorithm
and runs in small memory. Unfortunately, TASM-Postorder must scan the entire
document to answer a top-k query, which is slow. StructureSearch [31] addresses this
issue and leverages a precomputed index to retrieve candidate subtrees. The candidates
must be veri�ed using the edit distance.

StructureSearch runs faster than TASM-Postorder but su�ers from the following
issues: (1) The index size is quadratic in the document size n for deep trees; note that the
document is the database over which we answer the top-k query. (2) Despite the index,
StructureSearch must retrieve and verify many subtrees, which leads to high runtimes
also for small values of k . (3) While StructureSearch can be generalized to generic tree
data, the solution is tailored to XML documents, which have many repeating labels in
the inner nodes (element tags) and infrequent labels in the leaves (text values). Further,
XML trees are typically �at. Flat trees are in favor of StructureSearch since the index
grows larger for deep trees. (4) The index is not updatable.

Our solution is based on the idea of a candidate score. The candidate score ranks
all subtrees of a document. The score is high if the query and the subtree share many
labels. Intuitively, subtrees with a high score are more likely to be close to the query
in terms of edit distance. By processing subtrees in candidate score order, we (a) �nd
good candidates quickly and (b) can stop early when the ranking is good enough, i.e.,
all remaining subtrees cannot improve the ranking. Stopping early is possible since the
candidate score implies a lower bound on the edit distance. The candidate score is very
e�ective. In many settings, we verify orders of magnitude fewer candidate subtrees
than StructureSearch; in some settings we only verify k candidates, which is optimal.

The challenge is to e�ciently generate candidates in score order. The query is
not known upfront, thus the order must be established at query time and cannot be
precomputed. It is clearly not feasible to enumerate all subtrees and sort them by their
score. We introduce a new technique that is based on an inverted list index over the
document node labels. The inverted list of a label stores all subtrees that contain that
label. We split the lists into partitions of subtrees with the same size and show how to
leverage the list partitions to processes the subtrees in score order. The partitions are
accessed in the order of the best candidate score that may be found in that partition.
Only relevant partitions need to be accessed, e.g., there is only a single partition that
may contain subtrees of the highest score.

The catch is that the label inverted list index is quadratic in the document size n for
tress with depth O(n); for such trees, also the index of the state-of-the-art algorithm,
StructureSearch, is quadratic. We propose a new algorithm, SlimCone, which uses an

2.2 notation, background, and problem statement 19

incrementally updatable, linear-space index structure to build the relevant partitions
of the inverted lists on the �y at query time. SlimCone veri�es the subtrees in non-
decreasing candidate score order. We show how to generate partitions e�ciently such
that the performance penalty of generating the partitions on the �y is small.

Summarizing, our contributions are the following.

• We propose SlimCone, a new, index-based algorithm for the top-k subtree simi-
larity problem. SlimCone veri�es subtrees in decreasing candidate score order,
i.e., more promising subtrees are processed �rst. SlimCone does not require any
parameters and is not tailored to a speci�c data type.

• The state-of-the-art algorithm uses a quadratic-size index. We propose the �rst
linear-space index for top-k subtree similarity queries. Our index groups subtrees
into partitions. All subtrees in a partition have the same guarantee w.r.t. to the
candidate score such that we �nd promising subtrees e�ciently.

• We propose an extension of SlimCone that supports incremental index updates.
Previous work must recompute the index from scratch when the document tree
is updated.

• We empirically evaluate our solution on large synthetic and real-world datasets.
Our technique clearly outperforms the state of the art w.r.t. memory usage,
indexing time, number of veri�ed candidates, and query runtime, often by orders
of magnitude.

The remaining chapter is organized as follows. Section 2.2 provides background
material and introduces the problem statement. Section 2.3 discusses the candidate
scores. In Sections 2.4-2.6 we present our index structures and algorithms1. Section 2.7
describes how to make our index incrementally updatable. We discuss related work
in Section 2.8. Before we conclude in Section 2.10, we provide empirical evidence of
the scalability and e�ciency of our solution in Section 2.9. Appendix A of this thesis
contains the report of our reproducibility package, which has been accepted to the
ACM SIGMOD 2020 Reproducibility program.

2.2 notation, background, and problem statement

trees We assume rooted, ordered, labeled trees. A tree T is a directed, acyclic,
connected graph with nodesV (T) and directed edges E (T) ⊆ V (T) ×V (T). Each node
has at most one incoming edge, the node with no incoming edge is the root node. The
size of a tree, |T | = |V (T)|, is the number of its nodes. In an edge (u,v) ∈ E (T), u is the
parent of v , denoted par (v), and v is the child of u. Two nodes are siblings if they have
the same parent. A leaf node has no children. Each node u has a label, λ (u), which is
not necessarily unique. The multiset of all labels in T is L (T). The postorder (preorder)
identi�er of node u, post (u) (pre (u)), is the postorder (preorder) position of u in the

1 The given proofs and pseudocodes in these sections can be found in the Appendix of the original
publication, Kocher and Augsten [69].

20 a scalable index for top-k subtree similarity qeries

tree (1-based numbering). The trees are ordered, i.e., the sibling order matters. If node
u is on the path from the root to node v , u , v , then v is a descendant of u, and u is a
ancestor of v . A subtree Tu of T is a tree that consists of node u, all descendants of u,
and all edges in E (T) connecting these nodes.

tree edit distance The edit distance, δ (S ,T), between two trees, S , T , is the
minimum number of node edit operations that transforms S into T . We assume the
standard node operations [136]: Rename changes the label of a node. Delete removes a
nodeu and connects the children of the deleted node to its parent, starting at the sibling
position of u and maintaining the sibling order. Insert adds a new node u as the i-th
child of an existing node p, replacing a (possibly empty) sequence C = (ci , ci+1, . . . , c j)
of p’s children; the child sequence C is connected under the new node u. Insert and
delete are reverse operations. The fastest algorithms for the tree edit distance run in
O (|T |3) time and O (|T |2) space [91], i.e., computing the edit distance is expensive and
should be avoided.

lower bounds A lower bound for the tree edit distance may underestimate the
true distance, but never overestimates it. A number of edit distance lower bounds have
been de�ned [76]. Lower bounds are typically computed much faster than the edit
distance. We leverage the label lower bound,

llb (S ,T) =max {|S | , |T |} − |L (S) ` L (T)| ≤ δ (S ,T) , (2.1)

where A ` B denotes the intersection between two multisets, A and B, and the size
lower bound,

slb (S ,T) = | |S | − |T | | ≤ δ (S ,T) (2.2)

De�nition 2.2.1 (Top-k Subtree Similarity Query). Given a query tree Q , a document
tree T , k ≤ |T |. The top-k subtree similarity query returns a top-k ranking R, where
R is the sequence of the k most similar subtrees of document T w.r.t. query Q such that
∀Tj < R,Ti ∈ R.δ (Q ,Ti) ≤ δ

(
Q ,Tj

)
. The subtrees in R = [T 1,T 2, . . . ,T k] are sorted by

their edit distance to Q , i.e., ∀1 ≤ i < j ≤ k .δ
(
Q ,T i) ≤ δ (

Q ,T j) .
problem statement Our goal is a time- and space-e�cient solution for the top-k
subtree similarity query that scales to large document trees.

A naive solution computes the edit distance δ (Q ,Ti) for all subtrees Ti ∈ T , sorts
them by δ (Q ,Ti), and returns the �rst k subtrees in ascending sort order. Obviously, this
approach does not scale to large documents [8]. E�cient techniques prune irrelevant
subtrees and compute the edit distance only for candidate subtrees that cannot be
�ltered. Well known �lter techniques include the following.

size filter Augsten et al. [8] show that only subtrees of a maximum size τ =
2 |Q | + k need to be considered, thus subtrees Ti , |Ti | > τ , can be pruned.

2.3 effective candidate generation 21

ranking filter Once an intermediate ranking R′ of size k is obtained, the edit
distance δ (Q ,R′[k]) (δ (R′ [k]) for short) between the query Q and the last tree R′[k]
in the ranking serves as a �lter: A subtree Ti < R′ improves the �nal ranking R′ i�
δ (Q ,Ti) < δ (R′ [k]) [8]. Together with a lower bound, lb (Q ,Ti), a subtree can be safely
pruned if lb (Q ,Ti) ≥ δ (R′ [k]).

The better the ranking, the more e�ective is the ranking �lter. Thus, to reduce the
number of veri�cations it is important to �nd good subtrees early in the process.

Table 2.1 provides an overview of our notation.

Table 2.1: Notation overview.
Notation Description
T /Q document / query tree
R/R′ �nal / intermediate top-k ranking
k results size, k = |R |
R [j] j-th entry in R
Ti a subtree Ti ∈ T
par (u) parent of node u
pre (u) /post (u) preorder / postorder identi�er of node u
λ (u) label of node u
L (Ti) label multiset of tree Ti
δ (Q ,Ti) edit distance btw. Q and Ti
δ (R [j]) edit distance btw. Q and j-th entry in R
slb (Q ,Ti) size lower bound btw. Q and Ti
llb (Q ,Ti) label lower bound btw. Q and Ti
τ (= 2|Q | + k) maximum relevant subtree size [8]

2.3 effective candidate generation

The key idea of our approach is to prioritize promising subtrees. If we �ll the ranking
with good subtrees, the ranking �lter (cf. Section 2.2) is e�ective and we can terminate
early. In this section we de�ne the candidate score to rank subtrees. In the following
sections we discuss how to retrieve subtrees in the order of their candidate score.

De�nition 2.3.1 (Candidate Score). Given queryQ and documentT , the candidate score
of a subtree Ti of T is

score(Ti) = 1
1 + llb (Q ,Ti) ,

where llb (Q ,Ti) is the label lower bound between Q and Ti .

The candidate score is in the interval (0, 1], more promising subtrees score higher.
The candidate score imposes a total order on the subtrees of documentT , which we call
candidate score order : Given two subtrees Ti ,Tj ∈ T , Ti > Tj i� score (Ti) > score

(
Tj

)
.

A subtree Ti is processed by computing the tree edit distance between Ti and the
query Q , and by inserting Ti into the ranking if δ (Q ,Ti) < δ (R[k]). If we process the

22 a scalable index for top-k subtree similarity qeries

subtrees in candidate score order, we can stop afterm subtrees if the following stopping
condition holds.

Lemma 2.3.2 (Early Termination). LetT i be the i-th subtree of documentT in candidate
score order w.r.t. query Q (breaking ties arbitrarily), R′ a top-k ranking of the subtrees
T 1,T 2, . . . ,Tm , k ≤ m < |T |. If δ (R′ [k]) ≤ llb

(
Q ,Tm+1) , then R′ is a valid top-k

ranking for all subtrees T i ∈ T .
Proof. Due to the candidate score order and Def. 2.3.1, δ (R′[k]) ≤ llb

(
Q ,T j) for all

j > m; since llb
(
Q ,T j) ≤ δ (

Q ,T j) , no subtrees T j can improve the ranking. �

simple algorithm A simple top-k subtree similarity algorithm, Simple, that uses
Lemma 2.3.2 and the size �lter (cf. Section 2.2) proceeds as follows: compute the score
for each subtreeTi ∈ T , 1 ≤ |Ti | ≤ τ , and sort all subtrees by score, process the subtrees
in sort order, and stop when the early termination condition holds.

running example Figure 2.1 shows an example document T , an example query
Q , and the edit distance (δ) for all subtrees Ti ∈ T w.r.t. Q . Each node is represented by
its label and the postorder identi�er (subscript number). In the examples, we refer to
the subtree rooted in the i-th node of T in postorder as Ti .

o17

d7

b2

a1

a6

b3 b5

x4

d16

b11

a9

x8

b10

w15

z12 y14

b13

T

a4

b1 b3

x2

Q

Ti T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17
δ 3 3 3 3 2 0 3 3 2 3 4 4 3 3 4 9 13

Figure 2.1: Running example.

Example 2.3.3. We compute the top-k ranking, k = 3, for Q in T using Simple (cf.
Figure 2.1). Due to the size �lter, the maximum subtree size that must be considered
is τ = 2 |Q | + k = 11. We compute the label lower bound for all subtrees Ti , |Ti | ≤
τ and rank them by candidate score. For example, the label lower bound for T9 is
llb (Q ,T9) = max {|Q | , |T9 |} − |L (Q) ` L (T9)| = 2, where L (Q) = {{a,b,b,x}} and
L (T9) = {{a,x}}; the candidate score of T9 is score(T9) = 1/3. The result is shown in
Table 2.2; we order subtrees by postorder position in the case of ties; T17 is not listed since
|T17 | > τ .
Simple �rst processesT6,T11, andT2 in this order and computesδ (Q ,T6) = 0, δ (Q ,T11) =

4, and δ (Q ,T2) = 3, resulting in the intermediate ranking R′ = [T6,T2,T11]. Since

2.4 index and mergeall algorithm 23

Table 2.2: Example subtrees ordered by candidate score.
llb (Q ,Ti) score(Ti) Subtrees
0 1 T6, T11
2 1/3 T2, T5, T9
3 1/4 T1, T3, T4, T7, T8, T10, T13, T14, T15
4 1/5 T12
5 1/6 T16

δ (R′ [k]) = 4 and llb (Q ,T ′) = 2 for the next unprocessed subtree T ′ = T5, we continue
and verify T5 and T9. δ (Q ,T5) = 2, δ (Q ,T9) = 2, resulting in R′ = [T6,T5,T9]. Now,
δ (R′ [k]) = 2 ≤ llb (Q ,T ′) = 3 for the next subtree T ′ = T1, and we can terminate.

2.4 index and mergeall algorithm

We introduce the candidate index, which enables us to e�ciently retrieve candidates
in score order, and propose MergeAll, a baseline algorithm that solves top-k subtree
similarity queries using our index.

2.4.1 Candidate Index

The candidate index, I, is built over a document tree, T , and stores the following data
structures:

1. An inverted list index over the document labels.

2. The node index, a compact representation of T .

Our index supports the following operations:

• I.list (λ) retrieves the inverted list lλ for a label λ and returns nil if that list does
not exist.

• I.sizes () retrieves all distinct subtree sizes in T .

inverted list index We build an inverted list index on the document labels.
For each distinct label λ ∈ L (T), we maintain a list lλ of all subtrees that contain a
node labeled λ. The inverted list entries are lexicographically sorted by subtree size
and postorder identi�er (ascending order). Figure 2.2a shows the inverted lists for our
example document. A list entry is a subtree Ti , represented by the postorder identi�er
of its root node, i . The lists are partitioned by subtree sizes (shown above the lists).

node index We store the document T in an array of size |T |. The i-th �eld in the
array (1-based counting) is a pair (λi , |Ti |), where λi is the label of the i-th node of T in
postorder and |Ti | is the size of the subtree rooted in that node. Figure 2.2b shows the
node index for our example document.

24 a scalable index for top-k subtree similarity qeries

a

b

d

o

w

x

y

z

1

3 10 13

4 8

12

2 9

2 5 14

5 9

14

6 11

6 11 15

15

6 11

15

15

7

7

7

7

16

16

16

16

16

16

16

17

17

17

17

17

17

17

17

sizes 1 2 4 7 9 17

(a) Inverted list index of T .

1
a

1

lbl

size

2

b

2

3

b

1

4
x

1

5

b

2

6

a

4

7

d

7

8

x

1

9

a

2

10

b

1

11

b

4

12
z

1

13

b

1

14
y

2

15

w

4

16

d

9

17

o

17

(b) Node index of T .

Figure 2.2: Baseline index structure for document T of our running example (cf. Figure 2.1).

The node index is a lossless and compact representation of the document tree. We do
not need any other representation of the document for our algorithms. Conveniently,
each subtree Ti in the node index is a connected subsequence starting at position
i − |Ti | + 1 (|Ti | is accessed in constant time in the node index) and ending at position i .
The subtree part of the node index is a valid tree representation by itself.

The node index is built in a single scan of the document using a SAX parser and
is stored in main memory. While parsing, we build a dictionary that maps string
labels to unique integers. In our indexes and algorithms (including the edit distance
computation), we use integer labels (in our examples, however, we show the original
string labels).

λ1 λ2 λ3 . . . λn−1 λn

Figure 2.3: Worst-case document for the inverted list index (root to the left, leaf to the right).

index size The size of the candidate index is O (
n2) , n = |T |. Consider the tree

in Figure 2.3 with root label λ1, a single leaf λn , and pairwise distinct labels, λi , λj
unless i = j. The inverted list of λi has i entries, e.g., λn appears in n subtrees. The
overall number of entries is

∑n
i=1 i , which is quadratic.

2.4 index and mergeall algorithm 25

For the tree in Figure 2.3, also the index of StructureSearch [31] requires quadratic
space. We introduce a linear-space index in Section 2.6.

2.4.2 MergeAll Algorithm

MergeAll uses the candidate index and processes the subtrees Ti in the order of non-
decreasing size lower bound, slb(Ti ,Q) = | |Ti | − |Q | | (cf. Section 2.2), with respect to
the query Q .

We (conceptually) split the inverted lists into vertical stripes as illustrated in Figure 2.4.
A stripe S j consists of all subtrees Ti in all lists that have size |Ti | = |Q | + j , e.g., S2 and
S−2 are the blue stripes in the �gure. A partition consists of all subtrees of a stripe in a
single inverted list, e.g., the subtrees in stripe S0 of list lλ4 form a partition (marked in
the �gure). Stripes and partitions may be empty.

λ1 . . . 3 2 1 0 1 2 3 . . .

λ2 . . . 3 2 1 0 1 2 3 . . .

λ3 . . . 3 2 1 0 1 2 3 . . .

λ4 . . . 3 2 1 0 1 2 3 . . .

|Q
|−

3
S −

3

|Q
|−

2
S −

2

|Q
|−

1
S −

1

|Q
|+

1
S 1

|Q
|+

2
S 2

|Q
|+

3
S 3

|Q
|

S 0

...

la
be

ls

sizes
list

partition
stripe

Figure 2.4: Stripes and partitions w.r.t. query Q .

overview MergeAll processes the subtrees stripe by stripe. The current stripe
number is j . We leverage the fact that the size lower bound for all subtrees Ti in S j and
S−j is slb (Ti ,Q) = j. By incrementing the stripe number we process the subtrees in
ascending size lower bound order.

The goal, however, is to retrieve the subtrees in non-increasing candidate score order,
which is equivalent to the non-decreasing label lower bound order. We maintain a
lower bound cache (lbc) that stores subtrees in buckets. A subtree Ti in stripe S j or S−j
with label lower bound lb = llb (Q ,Ti) is cached in bucket lbc [lb] for later veri�cation
if lb > j.

26 a scalable index for top-k subtree similarity qeries

We only process lists of labels that exist in Q , λ ∈ L (Q), therefore we have at most
|Q | lists. We start at stripe j = 0 and proceed in four steps:

1. Verify all subtrees in lower bound bucket lbc [j].
2. For each candidate Ti ∈ S j ∪ S−j compute lb = llb (Q ,Ti).

a) If lb = j, then verify Ti ;
b) otherwise, cache Ti in lower bound bucket lbc [lb].

3. Increment to next stripe: j ← j + 1

4. Continue at step (1).

Whenever we verify a subtree Ti , we also update the ranking R. Since the current
stripe number j is a size lower bound for all subtrees in S j , we can terminate if |R | = k
and j ≥ δ (R [k]).

Overlap computation. We maintain two pointers, l and r , in each list. r is initialized
to the �rst subtreeTi (subtree with the smallest postorder identi�er) of stripe S0, l starts
at position r − 1. If not clear from the context, we refer to the pointers of a list lλ by
lλ .l and lλ .r .

We move the pointers in an n-way merge fashion to compute the label overlap with
the query. We stop moving a pointer when it points to the next stripe. We �rst move
the l pointers and maintain a counter ol [Ti] for each subtree Ti that we encounter;
then we move the r pointers in a similar way. After all pointers stop, the counter
ol [Ti] stores the overlap |L (Q) ` L (Ti)|. This works because our index structure sorts
elements within a stripe consistently. With the overlap, we compute the label lower
bound, llb (Q ,Ti) =max {|Q | , |Ti |} − |L (Q) ` L (Ti)| ≤ δ (Q ,Ti).

We next discuss two special cases. (1) Duplicate query labels. When the query Q has
duplicate labels, the list lλ is retrieved x times if Q has x nodes with label λ. Then, for
a subtree Ti we get an overlap ol [Ti] > |L (Q) ` L (Ti)| if Ti has fewer than x nodes
with label λ. The top-k result is still correct, but Ti may be processed too early w.r.t.
to the candidate score order. To avoid this situation, we can collect all subtrees and
compute their label overlap using our node index. In practice, the small violations
of the candidate order have little e�ect, and we suggest using the merge approach.
(2) Lists without query label. After processing all lists of the labels in Q , one of the
following situations may happen. (a) |R | < k , i.e., we did not �nd k subtrees that have
a common label with Q ; (b) δ (R [k]) > |Q |, i.e., there may be subtrees that do not share
a label with Q but should be in the ranking. In this case, we need to consider lists of
labels that do not exist in Q . For all subtrees in lists of non-query labels the minimum
edit distance is |Q |. We merge the lists stripe by stripe and use the stopping condition
to terminate. This corner case rarely appears in practice.

The following theorem considers MergeAll with the �x for duplicate query labels.

Theorem 2.4.1. MergeAll solves the top-k subtree similarity problem and veri�es subtrees
in candidate score order.

2.4 index and mergeall algorithm 27

Proof. Correctness: The stopping condition, |R | = k ∧ j ≥ δ (R [k]), is correct since all
subtrees Ti in partitions that are not processed have size lower bound slb (Q ,Ti) ≥ j

and can therefore not improve the ranking. Candidate score order : We increment stripe
number j, starting with j = 0. For a given j, we perform two steps: (1) We postpone
the veri�cation of subtrees Ti ∈ S j ∪ S−j for which x = llb (Q ,Ti) > j and cache
them in lbc [x]. (2) We verify (a) all subtrees Ti ∈ S j ∪ S−j for which llb (Q ,Ti) = j

and (b) all subtrees Ti ∈ lbc [j] (cached subtrees from previous stripes, j ′ < j). Thus,
all subtrees Ti of the stripes j ′ < j with llb (Q ,Ti) = j are veri�ed when we process
stripe j. There exists no subtree Ti with llb (Q ,Ti) = j in some stripe S j′′ , j ′′ > j, since
llb (Q ,Ti) ≥ slb (Q ,Ti) = j ′′ > j for all subtrees in S j′′ . �

Example 2.4.2. Figure 2.5 illustrates MergeAll for our running example, k = 3. We
retrieve the lists of the labels in Q : a, b (twice since b is a duplicate label), and x . We
start with stripe S0 (red stripe). Pointer r is initialized to the �rst subtree in S0 (T6 in all
lists), l starts on the last subtree in the green partition. We compute the overlap by moving
the pointers and merging the lists. l cannot be moved; r merges the partitions in S0 and
computes the overlaps of T6 (4), T11 (4), and T15 (2). Note that the true overlap of T15 is 1;
we overestimate due to the duplicate query label b. From the overlaps, we get the label
lower bounds llb (Q ,T6) = llb (Q ,T11) = 0 and llb (Q ,T15) = 2. Hence, T6 and T11 are
veri�ed, whereas T15 is cached in bucket lbc[2]; R′ = [T6,T11]. For the next stripe, j = 1,
there is nothing to do since lbc [1], S1, and S−1 are all empty. For j = 2, we �rst verify T15
in lbc [2] and get the ranking R′ = [T6,T11,T15]; next we process the subtrees in stripe S−2
(green); S2 is empty. The overlaps (2 for T14, T9, and 3 for T5, T2) are computed while l is
decremented. T14, T9 are veri�ed immediately. After T5 is veri�ed in the next round j = 3,
R = [T6,T5,T9], and we terminate since δ (R [k]) ≤ j. Figure 2.5 illustrates the pointers
after processing T5.

a

b

b

x

1 2 9 6 11 7 16 17

3 10 13 2 5 14 6 11 15 7 16 17

3 10 13 2 5 14 6 11 15 7 16 17

4 8 5 9 6 11 7 16 17

j

0

2

3

5

13

l r

l r

l r

l r

Figure 2.5: MergeAll after processing stripes j = 2.

pseudocode Algorithm 1 shows the pseudocode for MergeAll (Algorithms 2 and 3
are auxiliary functions).

28 a scalable index for top-k subtree similarity qeries

Algorithm 1: MergeAll(Q ,T ,k)
Input: Query tree Q , document tree T , result size k
Result: Top-k ranking R of subtrees of T w.r.t. Q
// I ... candidate index, L (Q) ... label multiset of Q

// Ti ... subtree rooted at node i

1 foreach λ ∈ L (Q) do // initialize inverted lists

2 lλ ← I.list (λ); // retrieve list lλ
3 if lλ , nil then // initialize pointers lλ .r, lλ .l
4 lλ .r ← pos. of i s.t. | |Q | − |Ti | | is minimal;
5 lλ .l ← lλ .r − 1

6 ol ← empty associative array; // overlap store

7 lbc ← empty dynamic array; // lower bound cache

8 j ← 0; // current stripe number

9 R ← empty ranking;
10 while j ≤ 2 |Q | do // j > 2 |Q |: we must consider all lists

11 if Verify-Bucket(j) then return R; // evaluate lbc [j]
12 foreach node i ∈ S j ∪ S−j do // compute overlaps

13 ol [i] ← # of lists lλ s.t. i ∈ lλ ;
14 advance lλ .r and lλ .l ;
15 foreach key i ∈ ol do // process subtrees (cache or verify)

16 lb ←max {|Q | , |Ti |} − ol [i];
17 if Process-Subtree(Ti , lb, j) then return R;
18 j ← j + 1; // proceed to next j′ > j

// check if we can terminate before continuing

19 if |R | = k ∧ j ≥ δ (R [k]) then return R;
20 return R;

Algorithm 2: Process-Subtree(Ti , lb,B)
Input: Subtree Ti , lower bound lb, edit distance bound B ≤ lb

Result: True if �nal ranking found, false otherwise
// lbc,R,Q globally accessible

1 if lb > B then // cache Ti
2 lbc [lb] ← lbc [lb] ∪ {Ti };
3 return false; // we cannot terminate

4 compute δ (Ti ,Q) and update R with Ti ; // lb = B; verify Ti
5 return |R | = k ∧ B ≥ δ (R [k]); // indicates if we can terminate

Algorithm 3: Verify-Bucket(B)
Input: Edit distance bound B
Result: True if �nal ranking found, false otherwise
// lbc,R,Q globally accessible

1 foreach Ti ∈ lbc [B] do // verify all subtrees in lbc [B]
2 compute δ (Ti ,Q) and update R with Ti ;

// return as soon as we can terminate

3 if |R | = k ∧ B ≥ δ (R [k]) then return true;
4 return false; // we cannot terminate

2.5 cone: partition-based traversal 29

2.5 cone: partition-based traversal

MergeAll processes one stripe per round and computes the label lower bound for all
subtrees in a stripe. The stripes may be large, leading to slow execution times. We
observe, however, that the size of the partitions within a stripe may vary greatly. The
inverted lists of frequent labels are very long (e.g., the list of the “article” tag in the
DBLP bibliography), leading to large partitions. Then, the runtime is dominated by
processing the partitions of long lists.

In this section we present Cone, an algorithm that addresses this issue. Cone pro-
cesses only a subset of the partitions in each stripe. The inverted lists are sorted and
short lists are accessed �rst. Therefore, the algorithm may terminate before considering
any of the large partitions. Cone uses an edit distance bound B, which is zero initially
and is incremented in each round. Only partitions that possibly contain a subtree Ti at
distance B from query Q are considered.

Assume we know that there are nml (Ti) labels in Q that do not exist in subtree Ti .
We call nml (Ti) = |L (Q) \ L (Ti)| the number of missing labels in Ti w.r.t. Q . Then we
can draw conclusions on the size of Ti that is required to achieve edit distance B.

Theorem 2.5.1 (Size Interval). Let Ti be a subtree of document T , Q be the query tree,
nml (Ti) be the number of missing labels in Ti w.r.t. Q , and B ≥ 0 an edit distance bound.
If δ (Q ,Ti) ≤ B, then |Ti | is in the size interval

si (B,Q ,Ti) = [|Q | − B; |Q | +B −nml (Ti)] (2.3)

Proof. Recall that the number of missing labels in Ti w.r.t. Q is de�ned as nml (Ti) =
|L (Q) \ L (Ti)|; nml (Ti) ≤ B due to δ (Q ,Ti) ≤ B. We prove the correctness of the
size interval by contradiction.

Case A: Assume a subtreeTi with δ (Q ,Ti) ≤ B and |Ti | ≤ |Q | − B − 1. The minimum
number of edit operations that transform any instance of Ti to some instance of Q
consists of |Q | − |Ti | insert operations. Note that we can decrease nml (Ti) and the size
di�erence |Q | − |Ti | by inserting a new node with a label from L (Q) \ L (Ti) into Ti .
Thus, in the best case, we perform exactly |Q | − |Ti | insertions, i.e., δ (Q ,Ti) = |Q | − |Ti |.
Our assumption yields |Q | − |Ti | ≥ B + 1, hence δ (Q ,Ti) ≥ B + 1, which contradicts
our assumption.

Case B: Assume a subtree Ti with δ (Q ,Ti) ≤ B and |Ti | ≥ |Q | + B − nml (Ti) + 1.
In this case, a delete operation can decrease the size di�erence |Ti | − |Q | but cannot
decrease nml (Ti): to align the labels, we additionally need nml (Ti) rename operations.
Hence, the minimum number of edit operations that transform any instance of Ti to
some instance ofQ consists of (1)nml (Ti) rename and (2) |Ti | − |Q | delete operations, i.e.,
δ (Q ,Ti) = nml (Ti)+ |Ti | − |Q |. Our assumption implies that |Ti | − |Q | ≥ B −nml (Ti)+
1. Therefore, δ (Q ,Ti) ≥ nml (Ti) + B − nml (Ti) + 1 = B + 1, which contradicts our
assumption.

Since the edit distance is symmetric, we do not need to consider the transformations
of Q into Ti . �

30 a scalable index for top-k subtree similarity qeries

For a given edit distance bound, B, the subtrees within the size interval are called
pre-candidates. The Cone algorithm proceeds in rounds. In every round some additional
partitions are processed. Every round examines one additional list until all lists are
initialized. We call a list initialized if we have already processed a partition in that list.

In the �rst round, B = 0, and we process the partition of subtree size |Q | in the �rst
list (cf. Theorem 2.5.1). The subtrees in this partition can achieve an edit distance of 0
since their size matches the query size and all labels may match (no label mismatch
found so far). Notably, these are the only subtrees that can achieve edit distance 0.
Subtrees in other lists have at least one missing label w.r.t. Q , and subtrees in another
partition of the �rst list are either smaller or larger than |Q |.

In every roundB is incremented and an additional list is considered (if non-initialized
lists are left). For the j-th list that we process, nml (Ti) ≥ j − 1: any new subtree Ti
that we �nd in the j-th list has at least j − 1 missing labels since we have processed all
subtrees of size |Ti | in the previous j − 1 lists and did not see Ti .

We process only a subset of the partitions in a given list and round, namely the
partitions that satisfy the size interval of the current round. Figure 2.6 illustrates this
partition-based traversal.

The Cone algorithm distinguishes between pre-candidates and candidates. We use
our index structure to generate pre-candidates. In the i-th round, B = i − 1, and we
only need to consider the �rst i lists in the index. Similar to MergeAll, we maintain two
pointers, l and r , for each list, initialized to the partition of the subtree size closest to |Q |.
The pointers are used to generate pre-candidates from a partition. Some pre-candidates
may be promoted to candidates. A pre-candidate Ti gets promoted whenever its label
lower bound is equal to B. Candidates are veri�ed immediately, whereas the remaining
pre-candidates are stored in the lower bound cache (lbc) for veri�cation in a later round
(cf. Section 2.4.2).

λ1 . . . 3 2 1 0 1 2 3 . . .

λ2 . . .

λ3 . . .

λ4 . . .

3 2 1 1 2 3 . . .

3 2 2 2 3 . . .

3 3 3 3 . . .

|Q
|−

3

|Q
|−

2

|Q
|−

1

|Q
|+

1

|Q
|+

2

|Q
|+

3

|Q
|

...

la
be

ls

sizes
nml (.)

≥ 0

≥ 1

≥ 2

≥ 3

Figure 2.6: Cone traversal of the inverted list index in candidate score order.

inverted list ordering Since Cone examines lists one by one, the list order is
important. Di�erent pre-candidates may be reported for di�erent list orders, resulting

2.5 cone: partition-based traversal 31

in earlier/later termination as well as fewer/more label lower bound computations and
veri�cations. Consider, for example, the lists in Figure 2.7 in reversed order [lb , lx , la].
Then, llb (Q ,T15) = 3 is computed in round 1 and T15 is cached for the round with
B = 3. Since the list length corresponds to the label frequency (a long list implies many
subtrees with this label), we order the lists in ascending order by their length.

Like in MergeAll, we may not be able to produce enough candidates from the lists
that share a label with the query. In this rare case, we fall back to MergeAll on all
remaining lists to derive a correct ranking (cf. Section 2.4).

Theorem 2.5.2. Cone solves the top-k subtree similarity problem and veri�es subtrees in
candidate score order.

Proof. Correctness: The stopping condition, |R | = k ∧ B ≥ δ (R [k]), holds since
all subtrees Ti in unprocessed partitions have size |Ti | < si (B,Q ,Ti) and therefore
δ (Q ,Ti) > B (cf. Theorem 2.5.1). Hence, these subtrees do not improve the ranking.
If Cone does not produce enough candidates from lists that share a label with Q , we
fall back to MergeAll on all remaining lists to derive a correct ranking. Candidate score
order : We increment the edit bound B, starting with B = 0. For a given list x (starting
with 0), we process all unprocessed partitions that contain subtrees in the size range
si (B,Q ,Ti). Let PB denote the set of all subtrees Ti in these new partitions of the lists
x ≤ B that we have not seen before.

Similar to MergeAll, we perform two steps for a given B: (1) We postpone the
veri�cation of subtreesTi ∈ PB for which x = llb (Q ,Ti) > B and cache them in lbc [x].
(2) We verify (a) all subtrees Ti ∈ PB for which llb (Q ,Ti) = B and (b) all subtrees
Ti ∈ lbc [B] (cached from previous sets PB′ , B ′ < B). Hence, all subtrees Ti of the sets
PB′ , B ′ < B, with llb (Q ,Ti) = B are veri�ed when we process set PB . There is no
subtreeTi with llb (Q ,Ti) ≤ B in some set PB′′ , B ′′ > B, i.e. llb (Q ,Ti) ≤ B =⇒ |Ti | ∈
si (B,Q ,Ti). Analogous to the proof of Theorem 2.5.1, we show this by contradiction.
Recall that llb (Q ,Ti) =max {|Q | , |Ti |} − |L (Q) ` L (Ti)|.

Case A: Assume a subtree Ti with llb (Q ,Ti) ≤ B and |Ti | ≤ |Q | − B − 1. Then,
max {|Q | , |Ti |} = |Q | implies that llb (Q ,Ti) = |Q | − |L (Q) ` L (Ti)|. Our assumption
yields |L (Ti)| ≤ |Q | − B − 1, and |L (Q)| = |Q |. Hence, |L (Q) ` L (Ti)| ≤ |Q | − B − 1
and therefore llb (Q ,Ti) ≥ B + 1, which contradicts our assumption.

Case B: Assume a subtree Ti with llb (Q ,Ti) ≤ B and |Ti | ≥ |Q | +B − nml (Ti) + 1.
Since nml (Ti) ≤ B, max {|Q | , |Ti |} = |Ti | =⇒ llb (Q ,Ti) = |Ti | − |L (Q) ` L (Ti)|.
Since nml (Ti) labels of Q are not in Ti , |L (Q) ` L (Ti)| = |Q | −nml (Ti) and therefore
llb (Q ,Ti) = |Ti | − (|Q | −nml (Ti)) = |Ti | − |Q | +nml (Ti). Our assumption yields |Ti | −
|Q | ≥ B −nml (Ti) + 1, hence llb (Q ,Ti) ≥ B + 1, which contradicts our assumption.

In the fallback case, MergeAll guarantees score order. �

Example 2.5.3. Figure 2.7 shows Cone applied on our running example, k = 3. The
�rst round, B = 0, retrieves and initializes la since la is the shortest list among all lists
of the query labels. Pointer l is initialized to T9, pointer r to T6. Then, pre-candidates
T6, T11 are generated from partition 0 of la . Subtrees T6 and T11 may match Q exactly
since there is no label mismatch so far, and |T6 | = |T11 | = |Q |. Next, we compute the
true label lower bounds using the node index; llb (Q ,T6) = llb (Q ,T11) = 0. Both are

32 a scalable index for top-k subtree similarity qeries

a

x

b

1 2 9 6 11 7 16 17

4 8 5 9 6 11 7 16 17

3 10 13 2 5 14 6 11 15 7 16 17

B

0

1

2

Dup.

l r

l r

Figure 2.7: Processed subtrees of Cone.

veri�ed and round 1 concludes; R′ = [T6,T11] and B is incremented (lower bound cache
lbc is empty). In round 2, we �rst process la again. The next partition of la contains
subtrees of size 2 (T9, T2) and 7 (T7), hence no pre-candidates are reported from la . Then,
we initialize and process list lb (l points toT9, r toT6), which does not provide us with new
pre-candidates (T6,T11 were already processed, indicated by the gray/green boxes). In round
3, B = 2, T9 and T2 are reported from la , and T5 is reported from lb . All pre-candidates
are promoted since llb (Q ,T9) = llb (Q ,T2) = llb (Q ,T5) = 2, resulting in R′ = [T6,T5,T9].
Since B ≥ δ (R [k]), we terminate; R = [T6,T5,T9]. Figure 2.7 depicts the processed list
entries.
Compared to MergeAll, Cone processes only 2 lists (instead of 4) and computes only 4

label lower bounds. Notice how the presence of T15 in list lb does not impose any overhead
because we terminate before it is processed.

pseudocode The pseudocode of Cone is given in Algorithm 4 (Algorithm 5 is an
auxiliary function). It reuses Algorithms 2 and 3 from Section 2.4.2.

2.6 linear space index and slimcone

Cone, presented in the previous section, is e�ective at producing candidates in score
order. Unfortunately, Cone relies on an inverted list index that requires quadratic
memory (in the worst case, cf. Section 2.4). In this section, we introduce the slim
inverted list index, which requires only linear space, and the SlimCone algorithm that
operates on the new index. SlimCone mimics Cone, but instead of scanning materialized
inverted lists, relevant list parts are generated on the �y.

2.6.1 Indexing in Linear Space

In the worst case, the inverted list index requires quadratic space. To avoid the full mate-
rialization of the inverted lists, we introduce an implicit and lossless list representation
that requires only linear space.

For a label λ ∈ L (T), the inverted list index stores every subtree that contains
label λ. In other words, a list stores all nodes on every path from a node labeled λ up
to the document root, and the paths are traversed at index build time. We propose
slim inverted lists to avoid full list materialization and traverse paths during candidate

2.6 linear space index and slimcone 33

Algorithm 4: Cone(Q ,T ,k)
Input: Query tree Q , document tree T , result size k
Result: Top-k ranking R of subtrees of T w.r.t. Q

1 L← deduplicated L (Q);
2 sort L by increasing list length |lλ |, λ ∈ L;
3 lbc ← empty dynamic array; // lower bound cache

4 B ← 0; // current edit distance bound

5 R ← empty ranking;
6 while B ≤ 2 |Q | do // B > 2 |Q |: use MergeAll on all lists

7 if Verify-Bucket(B) then return R; // evaluate lbc [B]
8 foreach init. list lλ do // process initialized lists first

9 if Process-List(lλ ,B) then return R;
10 if B ≤ |L| then // initialize next list

11 lλ ← I.list (L [B]); // retrieve next list

// process list lλ; Ti ... subtree rooted at node i
12 if lλ , nil then // initialize pointers lλ .r, lλ .l
13 lλ .r ← pos. of i s.t. | |Q | − |Ti | | is minimal;
14 lλ .l ← lλ .r − 1;
15 if Process-List(lλ ,B) then return R;

16 B ← B + 1; // proceed to next B′ > B
// check if we can terminate before continuing

17 if |R | = k ∧ B ≥ δ (R [k]) then return R;
18 return R;

Algorithm 5: Process-List(lλ ,B)
Input: Inverted list lλ , edit distance bound B
Result: True if �nal ranking found, false otherwise
// Q globally accessible; Ti ... subtree rooted at node i

1 minsize ← |Q | − B; // min. subtree size to consider

2 maxsize ← |Q | +B − idx [lλ]; // max. subtree size to consider

3 foreach unseen node i ∈ lλ s.t.maxsize ≥ |Ti | ≥ minsize do
// process Ti and return as soon as we can terminate

4 if Process-Subtree(Ti , llb (Ti ,Q) ,B) then return true;
5 advance lλ .r and lλ .l ;
6 return false; // we cannot terminate

generation. A slim inverted list (slim list) stores only nodes labeled λ (i.e., the start
of a path). For the path traversals (upwards, towards the root node), we extend the
node index (cf. Section 2.4.1) with parent pointers. This information enables us to
reconstruct paths on the �y. Figure 2.8 depicts the slim inverted list index and the
slim-extended node index of our running example.

2.6.2 The SlimCone Algorithm

We propose a new algorithm, SlimCone, that generates candidates in score order from
slim inverted lists. Since we push the path traversals into the candidate generation

34 a scalable index for top-k subtree similarity qeries

a

b

d

o

w

x

y

z

1

3 10 13

4 8

12

9

2 5

14

6

11

15

7 16

17

sizes 1 4 7 9 172

(a) Slim inverted list index.

1
a

1

2

lbl

size

par

2

b

2

7

3

b

1

6

4
x

1

5

5

b

2

6

6

a

4

7

7

d

7

17

8

x

1

9

9

a

2

11

10

b

1

11

11

b

4

16

12
z

1

15

13

b

1

14

14
y

2

15

15

w

4

16

16

d

9

17

17

o

17

0

(b) Slim-extended node index.

Figure 2.8: Linear-space index for example document T .

phase, SlimCone needs to walk up paths at query time using the slim-extended node
index. SlimCone is also round-based (B is incremented in each round, starting with 0)
and implements the Cone traversal on top of our slim inverted list index.

Cone can perform a binary search on the inverted lists to �nd the starting partitions.
With slim lists, this approach would consider only nodes labeled λ, but there may be
larger subtrees on the respective paths to the root. Slim lists do not store these subtrees
explicitly. To generate correct pre-candidates, we need to traverse the respective paths
for each entry of a slim list that represents a subtree smaller than Q . Notably, we may
not need to traverse the paths completely, but only until we encounter a subtree Ti
with size |Ti | ≥ |Q |.

For the path traversal, we retrieve all node identi�ers from the slim list at which a
subtree Ti with |Ti | < |Q | is rooted. For each identi�er, we look up its parent in the
node index and follow the path until the parent’s subtree size is greater than or equal
to |Q |. If the parent’s subtree size is |Q |, then the parent is in the �rst partition; we
immediately compute the label lower bound w.r.t. Q and verify the subtree if the label
lower bound matches B.

We keep track of the path ends (pe) for each slim list since we may need to continue
the upward traversal in a later round. If the last node on the path roots a subtree that
was veri�ed, we store its parent in the path ends. Furthermore, we maintain a path
cache (pc) for each slim list that stores all node identi�ers on a path with the size of the

2.6 linear space index and slimcone 35

subtree they root. This avoids redundant traversals of the same path. Details on path
cache and path ends are given below.

We may also need to examine additional list entries. Therefore, we store a single
pointer for each list, next, which points to the next unprocessed list entry and is
advanced whenever subtrees larger than Q are examined.

Note that the paths of all nodes that root a subtree Ti with |Ti | < |Q | need to be
traversed to generate all pre-candidates. While our algorithm climbs up all paths, it
visits all nodes that root subtrees that are part of the corresponding full inverted list.
Since we stop the traversal when we �nd a subtree root i s.t. |Ti | ≥ |Q |, we construct
the corresponding inverted list only partially. Figure 2.9 exempli�es this concept for
example list lb .

o17

d7

b2

a1

a6

b3 b5

x4

d16

b11

a9

x8

b10

w15

z12 y14

b13

T b 3 10 13 2 5 11

next
path cache of lb :

1: [3, 10, 13],
2: [2, 5, 14]

path ends of lb :

[7, 16]

Figure 2.9: Finding the starting point of a slim list.

We discuss the main concepts used by SlimCone to generate candidates in non-
increasing score order.

path caching The path cache (pc) stores a bucket for each subtree size that we
encounter during the path traversals. In bucket b, we collect all roots of subtrees Ti
s.t. |Ti | = b. This is necessary due to the vertical list expansion. Without the path
cache, we would need to traverse the path downwards again. Hence, we reuse the path
information in later rounds. If we need to consider smaller subtrees, we do a lookup in
the path cache. This provides us with a (possibly empty) set of subtree roots, which
contains all nodes that belong to a certain partition.

path ends We need to book-keep information about path ends (pe) for each slim
list. After successfully climbing up a path to the �rst node at which a subtree Ti with
|Ti | ≥ |Q | is rooted, we need to store the last node identi�er on the path. This is due to
the list expansion towards larger subtrees (w.r.t. |Q |). Therefore, for each slim list, we
maintain a sequence of node identi�ers, each of which represents the current end of a
path. By storing these node identi�ers, we can continue the upward path traversal in
later rounds, if necessary.

list ordering To be consistent with the list ordering of Cone, we order the lists
in SlimCone like in Cone, i.e., by increasing length. For each slim list, we compute and

36 a scalable index for top-k subtree similarity qeries

a

x

b

1 9 6

next

4 8

next

3 10 13 2 5 11

B

0

1

2

Dup. path cache of la :

1: [1], 2: [2, 9]
path cache of lx :

1: [4, 8], 2: [5]
path ends of la :

[7, 16]

Figure 2.10: Slim lists, path caches, and path ends.

store the length of the corresponding full inverted lists. We refer to this value as full
list length.

Similar to Cone, we use MergeAll on all lists of labels that are not in L (Q) to derive
a correct ranking for the case that SlimCone produces too few results.

Theorem2.6.1. SlimCone solves the top-k subtree similarity problem and veri�es subtrees
in candidate score order.

Proof. Correctness and candidate score order follow directly from Theorem 2.5.2 if we
prove that SlimCone’s partition traversal is identical to the partition traversal of Cone.
Note that an identical partition traversal is su�cient, i.e., subtrees within the partitions
need not be traversed in the same order. Identical partition traversal: SlimCone’s list
ordering is identical to the list ordering of Cone, hence lists (i.e., labels) are processed in
the same order. We distinguish (1) uninitialized and (2) initialized lists: (1) Uninitialized
lists: For each list entry i (rooting a subtree Ti) s.t. |Ti | < |Q |, the path in T is traversed
upwards until i ′ , i and |Ti′ | ≥ |Q | holds. All traversed nodes (excl. i ′) are cached in the
path cache pc . For Ti′ , there are two cases: (a) |Ti′ | > |Q |: i ′ is stored in the path ends
pe . (b) |Ti′ | = |Q |: llb (Q ,Ti′) is computed. If llb (Q ,Ti′) = B, Ti′ is veri�ed. Otherwise,
we postpone the veri�cation of Ti′ to round B ′. (2) Initialized lists: For a given list we
process (a) all list entries i s.t. |Q | +B −nml (Ti) ≥ |Ti | > |Q |, (b) all entries in the path
cache pc , and (c) all entries in the path ends pe . Due to (b) we process all subtrees Ti
smaller than Q , |Q | > Ti ≥ |Q | − B; due to (c) we process all subtrees Ti larger than
Q , |Q | + B − nml (Ti) ≥ Ti > |Q |. (2) and (3) guarantee that (i) SlimCone’s partition
traversal is identical to the partition traversal of Cone and (ii) all subtrees of a partition
are generated. �

Example 2.6.2. In Figure 2.10, we illustrate SlimCone for our running example, k = 3.
Similar to Cone, we retrieve slim list la since it is the shortest w.r.t. the full list lengths.
The initialization for la now di�ers from Cone: we climb up the paths of all entries of la
since the subtree sizes are smaller than or equal to |Q |. This results in the path cache and
path ends of la shown in Figure 2.10. During the traversal, we �nd T11 and T6 (in this
order) having |T6 | = |T11 | = |Q |. Consequently, we compute llb (Q ,T6) = llb (Q ,T11) = 0
and verify both, δ (Q ,T6) = 0, δ (Q ,T11) = 4. This results in R′ = [T6,T11]. Note that after
examiningT6 andT11, we traverse to their respective parents. Therefore,T16 is added to the
path ends of la . No new pre-candidates are processed in round 2. However, list lx is retrieved

2.7 efficient index updates 37

and initialized, resulting in the path cache and path ends of lx depicted in Figure 2.10.
Since we have already stored the node identi�ers 9, 7, and 16 during initialization of la ,
neither 9 is added to the path cache nor 7, 16 are added to the path ends of lx . In round 3,
B = 2, we process bucket 2 of the path cache of la , generating the pre-candidates T2 and
T9. We compute llb (Q ,T2) = llb (Q ,T9) = 2, verifyT2 andT9, and update R′ = [T6,T9,T2].
Analogously, we process T5 from the path cache of lx . This results in R = [T6,T5,T9].

pseudocode Algorithm 6 provides the pseudocode of SlimCone (Algorithms 7
and 8 are auxiliary functions). Again, Algorithms 2 and 3 are reused (cf. Section 2.4.2).

2.7 efficient index updates

We extend the slim index to support incremental updates. We support the standard
node edit operations as de�ned in Section 2.2: rename, delete, and insert. Updates
a�ect the inverted list index and the node index.

updating the inverted list index The position of a node in the inverted
list index is determined by its label and the size of its subtree. The rename operation
changes the label of a node, which requires us to remove the node from the list of the
old label and insert it into the list of the new label. Insert (delete) changes the subtree
size of all ancestors of the inserted (deleted) node, and we must add the new node into
the respective list (remove the deleted node). We implement a slim inverted list as a
balanced search tree (ordered by subtree size), thus requiring only O (log l) time to
�nd, insert, or delete a node from a list of length l . No further changes are required
to the slim inverted list index in response to node edit operations on the document.
Space and runtime complexity at query time are not a�ected.

dynamic node index The node index encodes the labels and the structure of the
document T . At query time, we need to e�ciently support the following operations:
(1) access a node by its identi�er, (2) reconstruct a subtree (or the label set of a subtree)
given its root node. A subtree is reconstructed by traversing all its nodes in postorder
(cf. Section 2.4.1).

(1) In the static node index, we identify a node by its postorder position. In our
dynamic version of the slim-extended node index, we allow arbitrary node identi�ers.
The node index is stored in an array and the identi�er of a node matches the array
position, thus a node is accessed in constant time. To ensure a compact representation,
we use consecutive identi�ers and maintain a free list to reuse array positions after
node deletions.

(2) To reconstruct a subtree given its root node, we store two additional �elds for
each node v : �rst child, c1 (v); next (right) sibling, sib (v). These �elds also allow us to
e�ciently traverse all nodes of a subtree in postorder.

We discuss the e�ect of updates on the dynamic node index. Rename: The node
is accessed via its identi�er and the label is changed in constant time. Insert: The
insert operation adds a new node u as the i-th child of an existing node p, replacing a

38 a scalable index for top-k subtree similarity qeries

Algorithm 6: SlimCone(Q ,T ,k)
Input: Query tree Q , document tree T , result size k
Result: Top-k ranking R of subtrees of T w.r.t. Q

1 L← deduplicated L (Q);
2 sort L by increasing full list length |lλ |, λ ∈ L;

// lower bound cache lbc, path cache pc, path ends pe, and

// positions in slim lists next
3 lbc ,pc ,pe ,next ← empty dynamic arrays;
4 B ← 0; // current edit distance bound

5 R ← empty ranking;
6 while B ≤ 2 |Q | do // B > 2 |Q |: use MergeAll on all lists

7 if Verify-Bucket(B) then return R; // evaluate lbc [B]
8 foreach init. list lλ do // process initialized lists first

9 if Process-Smaller(lλ ,B) then return R;
10 if Process-Larger(lλ ,B) then return R;
11 if B ≤ |L| then // initialize next list

12 lλ ← I.list (L [B]); // retrieve next list

13 if lλ , nil then
// initialize lλ buckets in pc and pe

14 pc [lλ] ,pe [lλ] ← empty dynamic Arrays;
15 next [lλ] ← 0; // initialize next pointer for lλ
16 foreach unseen node i ∈ lλ s.t. |Ti | < |Q | do

// climb up path; Tq ... subtree rooted at q
17 traverse up to �rst node q s.t.

��Tq �� ≥ |Q |;
// add all traversed nodes to path cache

18 foreach traversed node x (excl. q) do
19 pc [lλ] [|Tx |] ← pc [lλ] [|Tx |] ∪ {x};

// process Tq if size fits |Q |
20 if q unseen ∧

��Tq �� = |Q | then
21 lb ← llb

(
Tq ,Q

)
;

22 if Process-Subtree
(
Tq , lb,B)

then return R;
23 q ← par (q); // traverse to parent of q

24 pe [lλ] ← pe [lλ] ∪ {q}; // add q to path ends

25 next [lλ] ← pos. of i in lλ ; // next lλ-entry

26 if Process-Smaller(lλ ,B) then return R;
27 if Process-Larger(lλ ,B) then return R;

28 B ← B + 1; // proceed to next B′ > B
// check if we can terminate before continuing

29 if |R | = k ∧ B ≥ δ (R[k]) then return R;
30 return R

(possibly empty) sequence C =
(
ci , ci+1, . . . , c j

)
of p ′s children, and the child sequence

is connected under the new node u. We need to insert a new node into the index; the
identi�er of the new node matches its position in the node index array (new nodes
are appended or �ll a gap resulting from an earlier deletion). The following existing
nodes must be updated. (a) Ancestors of the inserted node u: The subtree sizes are
incremented by one; if u is the �rst child of its parent p, the �rst child pointer, c1 (p), is
updated. (b) (Former) children of p: The parent pointer of all nodes inC is updated; the

2.7 efficient index updates 39

Algorithm 7: Process-Smaller(lλ ,B)
Input: Inverted list lλ , edit distance bound B
Result: True if �nal ranking found, false otherwise
// pc,Q globally accessible

1 minsize ← |Q | − B; // min. subtree size to consider

// process all path cache buckets that fit w.r.t. size

2 s ← |Q | − 1;
3 while s ≥ minsize do
4 b ← pc [lλ] [s]; // get path cache bucket

// process all subtrees; Tq ... subtree rooted at node q
5 foreach unseen node q ∈ b do

// process Tq and return as soon as we can terminate

6 if Process-Subtree
(
Tq , llb

(
Tq ,Q

)
,B)

then
7 return true;

8 s ← s − 1; // proceed to next subtree size

9 return false; // we cannot terminate

Algorithm 8: Process-Larger(lλ ,B)
Input: Inverted list lλ , edit distance bound B
Result: True if �nal ranking found, false otherwise
// next,pe,Q globally accessible

1 maxsize ← |Q | +B − idx [lλ]; // max. subtree size to consider

// add fitting list entries to path ends bucket

2 while Tn ← subtree rooted at next [lλ] ∧ |Tn | ≤ maxsize do
3 pe [lλ] ← pe [lλ] ∪ {next [lλ]};
4 advance next [lλ];
5 foreach unseen node q ∈ pe [lλ] do // process path ends bucket

6 if
��Tq �� ≤ maxsize then // Tq ... subtree rooted at node q
// process Tq and return as soon as we can terminate

7 if Process-Subtree
(
Tq , llb

(
Tq ,Q

)
,B)

then
8 return true;
9 q ← par (q); // traverse to parent

10 return false; // we cannot terminate

next sibling pointers of c j and (if i > 1) ci−1 are updated. To insert a new root node, we
assume a virtual node with identi�er zero, which is treated as the parent of the actual
root node. Delete is the reverse of insert. The positions of deleted nodes are registered
in the free list.

Figure 2.11 illustrates the slim inverted lists and the dynamic node index after
inserting a new node into an example tree T ′. Only the dashed pointers in T ′′ (colored
�elds in slim lists and dynamic node index) need to be updated. Red, green, and
blue pointers (�elds) denote the parent, �rst child, and next sibling pointers (�elds),
respectively. Changes to subtree sizes are highlighted in gray. Overall, the complexity
of updating the node index is O (d + f), where d is the depth and f the maximum

40 a scalable index for top-k subtree similarity qeries

o23

d13

b2

a1

b5

d3 x4

a8

a6 d7

a12

b9 b11

x10

d22

b17

a15

x14

b16

w21

z18 y20

b19

T ′

(a) Example tree before node insertion (T ′).

o23

d13

b2

a1

j24

b5

d3 x4

a8

a6 d7

a12

b9 b11

x10

d22

b17

a15

x14

b16

w21

z18 y20

b19

T ′′

(b) Example tree after inserting node j24 (T ′′).

1
a

1

2

0

0

lbl

size

par

c1

sib

2

b

2

13

1

24

3

d

1

5

0

4

4
x

1

5

0

0

5

c

3

24

3

8

6

u

1

8

0

7

7
p

1

8

0

0

8

v

3

24

6

0

9

b

1

12

0

11

10

x

1

11

0

0

11

b

2

12

10

0

12
a

4

13

9

0

13

d

14

23

2

22

..

23

o

24

0

13

0

24
j

7

13

5

12

(c) Dynamic node index of example tree T ′′.

a

b

d

..

x

..

o

j

1 6

9 16 19

3 7

4 10 14

15

2 11

8

5

12

17

24

22 13

23

sizes 1 3 4 7 9 14 242

(d) Slim inverted list index of example tree T ′′.

Figure 2.11: Index update example.

2.8 related work 41

fanout of a node in the document. In many real datasets, f and d are small compared
to the document size. We show the e�ciency of updates in our experiments.

2.8 related work

Top-k Subtree Similarity Queries. TASM-Dynamic [8, 136], a simple solution for the
top-k subtree similarity problem, computes the edit distance between the query Q

and the entire document T using dynamic programming. As a side product, the edit
distances between the query and all subtrees of the document are computed. This
approach requires O(|Q |2 |T |) time and O(|Q | |T |) space [35]. Augsten et al. [8, 9]
show that the maximum subtree size that must be considered is τ = 2 |Q | + k . They
develop the TASM-Postorder algorithm that runs in O(|Q |2 + |Q | k) space, i.e., the
memory is independent of the document size. TASM-Postorder does not use an index
and must scan the document for each query. We empirically compare our solution to
TASM-Postorder.

Cohen [31] proposes StructureSearch, the �rst index-based method for top-k subtree
similarity queries. The index identi�es repeating subtree patterns to reduce the number
of redundant edit distance computations. StructureSearch does not need to scan the
document at query time and outperforms TASM-Postorder in terms of runtime. How-
ever, StructureSearch requires a large index, which can be quadratic in the document
size. The document is the database, which may be large (e.g., SwissProt has |T | = 479M
nodes). Our SlimCone algorithm requires only a linear-size index. We empirically
compare StructureSearch to SlimCone. Our solution builds a smaller index, building
the index is faster, and in most settings we outperform StructureSearch in terms of
query response time, often by orders of magnitude.

XML Indexing Techniques. Inverted lists and data structures similar to our node index
have also been used to index XML documents [51, 66]. These works solve a di�erent
problem (answering resp. ranking XPath queries) and do not consider the tree edit
distance. Further, our index access methods are di�erent: we access the inverted lists
partition by partition based on an edit distance bound and build the partitions on the
�y while accessing them.

Tree Edit Distance. The classical tree edit distance algorithm by Zhang and Shasha [136]
runs in O (

n4) time and O (
n2) space for trees with n nodes; for �at trees of depth

O (logn) the algorithm runs e�ciently in O (
n2 log2 n

)
time. Bille [18] surveys classical

edit distance algorithms. Newer developments include the algorithm by Demaine et
al. [35], which reduces the runtime to O (

n3) , and AP-TED+ by Pawlik and Augsten [91].
AP-TED+ analyzes the input trees and dynamically computes the optimal evaluation
strategy. While the runtime complexity remains cubic, this worst case can often be
avoided. Despite all e�orts, computing the edit distance remains expensive. We intro-
duce the candidate score to rank subtrees, verify promising candidates �rst, and thus
reduce the number of expensive edit distance computations.
Related Problem De�nitions. Related but di�erent problems include, for example,

XML duplicate detection [26, 95], approximations of the tree edit distance [12, 133],

42 a scalable index for top-k subtree similarity qeries

tree similarity joins [111], top-k similarity joins for sets [129], and top-k queries over
relational data [60].

Cohen et al. [30] introduce a top-k algorithm that works for both ordered and
unordered trees. In near linear time, the algorithm retrieves the top-k subtrees in
a document w.r.t. a so-called pro�le distance function. A pro�le distance function
projects tree features to a multiset and evaluates the distance between feature multisets;
examples include pq-grams [12] and binary branches [133]. The algorithm by Cohen
et al. [30] solves a related but di�erent problem and does not provide edit distance
guarantees on the ranking.

In their TA algorithm, Fagin et al. [42, 43] process ranked lists of items sorted by
some local score. The global score of an item is computed based on the respective local
scores. The goal is to �nd the k items with the highest global score. Akbarinia et al. [2]
improve the e�ciency of TA by minimizing the number of list accesses. Theobald et
al. propose TA-based solutions to answer probabilistic top-k queries [115], e�ciently
expand queries [113], and build an e�cient top-k query processing system for semi-
structured data [116]. We introduce the candidate score on subtrees, but we do not
merge ranked lists. The challenge in our setting is to rank candidates e�ciently and
produce the head of the ranked list without generating the tail.

2.9 empirical evaluation

We empirically compare our solutions to two state-of-the-art algorithms on both
synthetic and real-world data. We vary document size, query size, and k , and measure
query time, indexing time, main memory, and the number of veri�cations.

2.9.1 Setup & Datasets

setup All experiments were conducted on a 64-bit machine with 8 Intel(R) Xeon(R)
CPUs E5-2630 v3, 2.40GHz, 20MB L3 cache (shared), 256KB L2 cache (per core), and
96GB of RAM, running Debian 8.11, kernel 3.16.0-6-amd64. We compile our code with
clang (ver. 3.5.0-10) at maximum optimization level (-O3). Although we have multiple
cores, we run all experiments single-threaded with no other load on the machine.
We measure the runtime with getrusage2 (sum of user and system CPU time). Each
runtime measurement is an average over �ve runs. We measure main memory as
the heap peak value provided by the libmemusage.so library3 (preloaded using the
LD_PRELOAD environment variable).

datasets and qeries We use the XMark benchmark to generate synthetic
datasets of �ve di�erent sizes. Additionally, we run experiments on three real-world

2 http://man7.org/linux/man-pages/man2/getrusage.2.html
3 http://man7.org/linux/man-pages/man1/memusage.1.html

http://man7.org/linux/man-pages/man2/getrusage.2.html
http://man7.org/linux/man-pages/man1/memusage.1.html

2.9 empirical evaluation 43

datasets: TreeBank4 (TB), DBLP5, and SwissProt6 (SP). Important dataset characteristics
are summarized in Table 2.3. XMark, DBLP, and SwissProt were also used in previous
work [31], although only small subsets of DBLP and SwissProt were used; we process
the full datasets. From each of the datasets (documents, T), we randomly extract four
di�erent queries, Q , with 4, 8, 16, 32, 64 nodes, respectively. We also vary the result
size, k .

Table 2.3: Dataset characteristics.
Name Size T Size [Nodes] # di�.

[MB] |T | avg. |Ti | labels
XMark1 112 3.6 · 106 6.2 510 · 103

XMark2 223 7.2 · 106 6.2 822 · 103

XMark4 447 14.4 · 106 6.2 1.3 · 106

XMark8 895 28.9 · 106 6.2 1.9 · 106

XMark16 1,790 57.8 · 106 6.2 2.9 · 106

TreeBank 83 3.8 · 106 8.4 1.4 · 106

DBLP 2,161 126.5 · 106 3.4 21.6 · 106

SwissProt 6,137 479.3 · 106 5.1 11.4 · 106

algorithms We compare our algorithms Merge, Cone, Slim (cf. Sections 2.4–
2.6) to the state-of-the-art algorithms TASMPostorder [8, 9] (Tasm, fastest index-free
algorithm) and StructureSearch [31] (Struct, fastest algorithm with precomputed
index). Slim-Dyn refers to the version of Slim with incremental update support (cf.
Section 2.7). All algorithms were implemented in C++11. We maintain the node labels
in a dictionary and replace string labels by integers. All indexes reside in main memory.
For computing the tree edit distance, we use the algorithm by Zhang & Shasha [136],
which is e�cient for �at trees (depth O(logn), as is typically the case in XML).

space-efficient structuresearch Cohen [31] implements the Structure-
Search algorithm using uncompressed Dewey labels (Struct-Dewey in our exper-
iments), which leads to large indexes of about 10 times the document size (in MB);
in the worst case, the index size is quadratic in the document size since each Dewey
label may be of linear size. Cohen suggests to compress the Dewey labels to improve
space performance. We take a di�erent approach and use preorder, postorder, and
parent (preorder) identi�ers to (1) verify ancestor relationships and (2) to generate the
ancestor path of a node. Given the pre- and postorder identi�ers of two nodes u and v ,
u is an ancestor of v if and only if pre (v) > pre (u) ∧post (v) < post (u). We e�ciently
generate the path between a node v and its ancestor u using the parent pointers. Thus,
the node identi�ers in our space-e�cient implementation (Struct) have constant size
and we need not deal with compressed Dewey labels to verify node relationships or

4 https://www.seas.upenn.edu/~pdtb/
5 https://dblp.uni-trier.de/xml/dblp.xml.gz
6 ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/
uniprot_sprot.xml.gz

https://www.seas.upenn.edu/~pdtb/
https://dblp.uni-trier.de/xml/dblp.xml.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz

44 a scalable index for top-k subtree similarity qeries

generate ancestor paths. In our experiments, we show that we substantially reduce the
index size w.r.t. the original implementation.

Struct assumes XML and distinguishes common and uncommon labels. Inner
nodes and the x most frequent leaf nodes of an XML document are considered common.
Further, Struct has a maximum edit bound y. The top-k ranking of Struct contains
only subtrees with a maximum edit distance of y. All datasets in our tests are available
in XML, thus we con�gure Struct as suggested by Cohen [31] and set x = 1000,
y = |Q |. Our algorithms do not require any parameters.

2.9.2 Indexing

We compare the indexes of Struct, Cone, Slim, and Slim-Dyn in terms of size (all
memory-resident index structures including the document) and runtime to build the
index. With Struct-Dewey we refer to the original implementation of Struct by
Cohen [31], which uses uncompressed Dewey labels. The index of Merge is identical
to the index of Cone and is not shown separately; Tasm does not build an index.

The results are shown in Figure 2.12. For Struct-Dewey, we estimate the index size
based on the instructions of Cohen [31] (index size is about 10 times the document
size). Our space-e�cient implementation of Cohen’s algorithm (Struct) substantially
improves the memory and requires only about 2–5 times the document size (except
for TB). Cone and Slim clearly outperform Struct both in terms of index size and
runtime for building the index. Even the space-e�cient implementation of Struct
requires at least 1.5–3 times more memory than Slim. Except for DBLP and TB, the
index size of Slim is within two times the document size. Among our algorithms, Slim
is faster and builds a smaller index. This is expected since Slim indexes each node once,
while Cone may index each node multiple times. In the worst case, when the depth of
the document grows linearly with its size, the index of Cone grows quadratically; this
is not the case for the documents in our test. The size of Slim-Dyn (which supports
incremental updates) is similar to the size of the space-e�cient implementation of
Struct (which does not support updates), but builds much faster.

incremental updates We compare the time to incrementally update the slim
index to the time of building the static slim index from scratch (Slim-From-Scratch).
Figure 2.12e and Figure 2.12f show the results for the XMark8 and the DBLP datasets,
respectively. We randomly rename or delete nodes in the document. Insertion is similar
to deletion in that it reverses the index updates of a delete operation. The update time
is linear in the number of updates for both rename and deletion. As expected, deletion
takes slightly more time than rename since all ancestors and children of the deleted
node must be updated. The break even point for building the index from scratch is at
about 105 deletions / 5 · 105 renames for XMark8 and 104 deletions / 105 renames for
DBLP.

2.9 empirical evaluation 45

111 223 447 895 1,790

101

102

document size [MB]
ru

nt
im

e
[s

]

Struct Cone
Slim Slim-Dyn

(a) Build time, XMark.

111 223 447 895 1,790

103

104

document size [MB]

m
em

or
y

[M
B]

Struct-Dewey Struct Cone
Slim-Dyn Slim

(b) Index size, XMark.

TB DBLP SP
100

101

102

103

104

document

ru
nt

im
e

[s
]

Struct Cone
Slim-Dyn Slim

(c) Build time, real world.

TB DBLP SP

103

104

105

document

m
em

or
y

[M
B]

Struct-Dewey Struct Cone
Slim-Dyn Slim

(d) Index size, real world.

10 102 103 104 105 10610−1
100
101
102
103
104
105
106

updates

ru
nt

im
e

[m
s]

Rename Slim-FromScratch Delete

(e) Update time, XMark8.

10 102 103 104 105 106101
102
103
104
105
106
107
108

updates

ru
nt

im
e

[m
s]

Rename Slim-FromScratch Delete

(f) Update time, DBLP.

Figure 2.12: Build time, index size, and update time.

2.9.3 E�ectiveness and Query Time

We evaluate our algorithms that process the subtrees in candidate score order (Merge,
Cone, Slim, Slim-Dyn, cf. Figure 2.13). Since Slim and Slim-Dyn are the same al-
gorithms operating on di�erent indexes, we only discuss Slim. Supporting updates
only marginally a�ects the query time for varying query, document, and result size (cf.
Slim-Dyn in Figures 2.13–2.16). Merge needs to verify many more candidates and is
consistently slower than its competitors. This con�rms the e�ectiveness of the clever
list traversal used by Cone and Slim. In some cases, Cone is faster than Slim since Slim
must build the lists on the �y; we measure the largest di�erence for DBLP, where Slim
must traverse many paths to initialize the inverted lists. The number of veri�cations is
the same for both algorithm. Overall, the runtime di�erence is small in most cases, thus
Slim pays a low price for reducing the memory complexity from quadratic to linear.

Next, we compare Slim to the two state-of-the-art approaches with precomputed
index (Struct) resp. without index (Tasm). The query time increases with the document
size for all solutions except Slim (cf. Figure 2.14). The runtime of Slim may even
decrease with the document size. Larger documents have more subtrees, therefore

46 a scalable index for top-k subtree similarity qeries

111 223 447 895 1,79010−1

100

101

102

103

document size [MB]

ru
nt

im
e

[m
s]

Merge Cone Slim Slim-Dyn

(a) Query time, XMark.

111 223 447 895 1,790100

101

102

103

104

document size [MB]

ve
ri�

ca
tio

ns

Merge Cone Slim Slim-Dyn

(b) Veri�cations, XMark.

TB DBLP SP
100

101

102

103

104

document

ru
nt

im
e

[m
s]

Merge Cone Slim Slim-Dyn

(c) Query time, real world.

TB DBLP SP
100

101

102

103

104

document

ve
ri�

ca
tio

ns

Merge Cone Slim Slim-Dyn

(d) Veri�cations, real world.

Figure 2.13: Merge, Cone, Slim: Query time and number of veri�cations over document size,
k = 10, |Q | = 16.

111 223 447 895 1,79010−1
100
101
102
103
104
105

document size [MB]

ru
nt

im
e

[m
s]

Tasm Slim-NoIndex Struct
Slim Slim-Dyn

(a) Query time, XMark.

111 223 447 895 1,790100
101
102
103
104
105
106

document size [MB]

ve
ri�

ca
tio

ns

Tasm Struct
Slim Slim-Dyn

(b) Veri�cations, XMark.

TB DBLP SP
102

103

104

105

106

document

ru
nt

im
e

[m
s]

Tasm Slim-NoIndex Struct
Slim Slim-Dyn

(c) Query time, real world.

TB DBLP SP
100
101
102
103
104
105
106
107

document

ve
ri�

ca
tio

ns

Tasm Struct
Slim Slim-Dyn

(d) Veri�cations, real world.

Figure 2.14: State of the art vs. Slim: Query time and number of veri�cations over document
size, k = 10, |Q | = 16.

there is a better chance to �ll the ranking with good matches and terminate early. For
example, the number of veri�cations decreases between XMark1 and XMark2. Slim
builds and traverses only the relevant parts of the lists and is therefore e�cient for
large documents. Also for Struct, the number of veri�cations is independent of the

2.9 empirical evaluation 47

document size, but in absolut numbers Slim veri�es between two and three orders of
magnitude fewer candidates. Further, the runtime of Struct substantially increases
with the document size. Overall, Slim is up to three orders of magnitude faster than
Struct. Notably, Slim is bene�cial for a single query even without precomputed index
(cf. Slim-NoIndex in Figures 2.14a and 2.14c).

Slim outperforms its competitors also when the query size increases (Figure 2.15).
Note the small number of veri�cations in Figure 2.15b: for |Q | = 8, Slim veri�es only k

candidates, which is optimal (only subtrees that appear in the �nal ranking are veri�ed).
This con�rms the e�ectiveness of the score order and the clever list traversal in Slim.
Struct resp. Tasm must verify at least two resp. three orders of magnitude more
candidates (except for TB, |Q | = 64). The runtime of Slim on XMark8 is always below
1s (|Q | = 4 and |Q | = 8: below 1ms), whereas the best competitor, Struct, runs for at
least 1s and up to 8s . The results on our real-world datasets lead to similar conclusions;
only on DBLP Struct is slightly faster.

4 8 16 32 6410−1
100
101
102
103
104
105
106

query size [nodes]

ru
nt

im
e

[m
s]

Tasm Struct Slim Slim-Dyn

(a) Query time, XMark8.

4 8 16 32 64100
101
102
103
104
105
106
107

query size [nodes]

ve
ri�

ca
tio

ns

Tasm Struct Slim Slim-Dyn

(b) Veri�cations, XMark8.

4 16 6410−1
100
101
102
103
104
105
106

TB

ru
nt

im
e

[m
s]

4 16 64
DBLP

Tasm Struct Slim

4 16 64
SP

(c) Query time, real world.

4 16 64100
101
102
103
104
105
106
107

TB

ve
ri�

ca
tio

ns

4 16 64
DBLP

Tasm Struct Slim

4 16 64
SP

(d) Veri�cations, real world.

Figure 2.15: State of the art vs. Slim: Query time and number of veri�cations over query size
|Q |, k = 10.

In Figure 2.16, we vary the result size k . All algorithms produce more candidates
since the lower bound computed from the top-k ranking is looser when k is larger (and
thus the subtree at position k in the ranking is less similar to the query). Slim bene�ts
from the small candidate set for small values of k and achieves runtimes between 0.1ms

and 1s in the range k = 1 to k = 100. Struct must verify many more candidates than
SlimCone. Although in Struct the number of veri�cations for k = 1 is by orders of
magnitude smaller than for k = 100, the runtime improves only marginally. Struct
retrieves many subtrees from the index that are �ltered before they are veri�ed; the
number of retrieved subtrees does not depend on k and may be much larger than the
number of veri�cations. Slim does not incur this overhead: candidates are processed

48 a scalable index for top-k subtree similarity qeries

partition by partition, and more promising partitions are processed �rst. Except for
DBLP, Slim outperforms Struct on all k values except k = 10000. For k = 10000, both
algorithms must verify many subtrees. Struct groups subtrees into equivalence classes
of subtrees and veri�es only one representative in each class, thus saving edit distance
computations. This veri�cation technique is orthogonal to the candidate generation
and could also be adopted in Slim.

1 10 102 103 10410−1
100
101
102
103
104
105

result size, k

ru
nt

im
e

[m
s]

Tasm Struct Slim Slim-Dyn

(a) Query time, XMark8.

1 10 102 103 104100
101
102
103
104
105
106
107

result size, k

ve
ri�

ca
tio

ns

Tasm Struct Slim Slim-Dyn

(b) Veri�cations, XMark8.

1 10 102

10−1

101

103

105

TB

ru
nt

im
e

[m
s]

1 10 102

DBLP

Tasm Struct Slim

1 10 102

SP

(c) Query time, real world.

1 10 102
100

102

104

106

TB

ve
ri�

ca
tio

ns

1 10 102

DBLP

Tasm Struct Slim

1 10 102

SP

(d) Veri�cations, real world.

Figure 2.16: State of the art vs. Slim: Query time and number of veri�cations over varying
result size k , |Q | = 16.

2.10 conclusion

In this chapter, we introduced a novel indexing technique for top-k subtree similarity
queries, which retrieve the k most similar subtrees in a documentT w.r.t. a query treeQ .
We proposed the �rst incrementally updatable, linear-space index to solve this problem.
Previous solutions either scan the entire document, or they build an index, but the
index is static (not updatable) and large (quadratic in the document size in the worst
case). The document is the database on which we compute the top-k query. Computing
a quadratic-size index is not feasible for large documents.

We proposed the candidate score, which sorts subtrees such that more promising
subtrees appear earlier in the sort order. We could show that processing subtrees in
candidate score order substantially reduces the number of items that must be processed
and veri�ed. We developed SlimCone, a novel algorithm that leverages our linear-
size index to e�ciently retrieve candidates in non-increasing candidate score order.
SlimCone is not tailored to XML (like previous work) and does not require any tuning
parameters.

2.10 conclusion 49

Our experiments con�rmed the e�ectiveness of our techniques. SlimCone outper-
formed the state of the art in almost all scenarios w.r.t. memory consumption, number
of veri�cations, indexing time, and query time, often by multiple orders of magnitude.

acknowledgments We thank the anonymous reviewers for their constructive com-
ments and Mateusz Pawlik, Thomas Hütter, and Willi Mann for valuable discussions. This
work was supported by the Austrian Science Fund (FWF): P 29859.

3
S C A L I N G D E N S I T Y- B A S E D C L U S T E R I N G T O L A R G E
C O L L E C T I O N S O F S E T S

authors Daniel Kocher, Nikolaus Augsten, and Willi Mann
venue EDBT, Nicosia, 2021 (Accepted)1

abstract

We study techniques for clustering large collections of sets into DBSCAN clusters. Sets
are often used as a representation of complex objects to assess their similarity. The
similarity of two objects is then computed based on the overlap of their set represen-
tations, for example, using Hamming distance. Clustering large collections of sets is
challenging. A baseline that executes the standard DBSCAN algorithm su�ers from
poor performance due to the unfavorable neighborhood-by-neighborhood order in
which the sets are retrieved. The DBSCAN order requires the use of a symmetric index,
which is less e�ective than its asymmetric counterpart. Precomputing and materializ-
ing the neighborhoods to gain control over the retrieval order often turns out to be
infeasible due to excessive memory requirements.

We propose a new, density-based clustering algorithm that processes data points
in any user-de�ned order and does not need to materialize neighborhoods. Instead,
so-called backlinks are introduced that are su�cient to achieve a correct clustering.
Backlinks require only linear space while there can be a quadratic number of neighbors.
To the best of our knowledge, this is the �rst DBSCAN-compliant algorithm that can
leverage asymmetric indexes in linear space. Our empirical evaluation suggests that
our algorithm combines the best of two worlds: it achieves the runtime performance
of materialization-based approaches while retaining the memory e�ciency of non-
materializing techniques.

3.1 introduction

We consider the problem of partitioning large collections of sets into DBSCAN clus-
ters [40]. Our work is motivated by a process mining use case at Celonis SE that models
processes as sets. A process is a sequence of timestamped activities. Large companies
store hundreds of millions of activities in millions of processes. In order to analyze
the processes, they should be clustered into groups of similar activity sequences that
can be further explored [22, 58, 105]. To this end, a process is represented by the
set of all its neighboring activity pairs, e.g., the process with the activity sequence
(S ,O , P ,H ,R, F ,E) (Start, Order, Pay, sHip, Return good, reFund, End) is represented

1 The original publication Kocher et al. [70] (EDBT 2021) discusses a multi-core extension. This extension
can be found in Section 4.2 of this thesis.

51

52 scaling density-based clustering to large collections of sets

by the set {(S ,O), (O , P), (P ,H), (H ,R), (R, F), (F ,E)}. The similarity of two processes is
then assessed by the Hamming distance2 of their set representations.

Sets are used in many other applications [81] to represent objects for the purpose of
clustering, e.g., sales may be represented by sets of product categories, photos by sets
of tags and title words, user interactions on a website by sets of visited links, users of a
social network by their group memberships, or users of a music streaming platform by
sets of tracks they listen to.

The popular DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
algorithm [40] identi�es clusters of arbitrary shape without requiring the number of
clusters as input. Intuitively, DBSCAN �nds dense regions that are separated by regions
of lower density. The density of a region (given a distance function between pairs of
data points) is de�ned by two parameters: the number of neighbors, minPts, and the
radius, ϵ , of the neighborhood. A data point is called core point (i.e., it is at the core of
a dense region) if it has at least minPts neighbors (including itself) within radius ϵ ; a
non-core point in the ϵ-neighborhood of a core point is a border point (i.e., it is at the
border of a dense region); all other points are noise [100].

The runtime of the DBSCAN algorithm heavily depends on the e�ciency of the
neighborhood computation. In our experiments, the neighborhood computation ac-
counts for up to 99% of the overall runtime for some datasets. Therefore, in order to
e�ciently cluster large collections of sets, e�ective indexing techniques for sets are
required.

Similarity indexes for sets have been proposed in the context of ϵ-neighborhood
joins, which are executed in an index nested loop fashion. A prominent representative
is the pre�x index [6, 29], which is linear in size and has been shown to be highly
e�ective [81]. The symmetric pre�x index returns the complete ϵ-neighborhood for
a given query point r . The asymmetric pre�x index assumes a processing order on
the sets in R and retrieves only the lookahead neighbors: the ϵ-neighbors that follow
r in processing order. A typical processing order for sets is based on the set sizes
(ties broken arbitrarily). The asymmetric pre�x index further leverages the length
information to avoid many of the candidates that the symmetric index must inspect
(among the unprocessed sets). Figure 3.1 illustrates the ϵ-neighborhood, the lookahead
neighbors, and the candidate regions of symmetric and asymmetric index, respectively.
The region above the gray line represents the sets that have been processed before r ,
the region below the gray line are unprocessed sets. The circles and semicircles show
subset relationships.

Clearly, the asymmetric pre�x index is preferable in terms of e�ectiveness over its
symmetric counterpart. Unfortunately, there is an inherent mismatch between the
asymmetric index and the DBSCAN algorithm. DBSCAN su�ers from the following
issues when executed with the asymmetric index: (1)Core status problem: The lookahead
neighbors of r are not su�cient to update the core status of r . (2) Border vs. Noise
problem: To distinguish border points from noise, a border point must be visible from a
core point, which is not guaranteed by the asymmetric lookahead neighborhood. (3)
Disconnected clusters: To guarantee connected clusters, DBSCAN imposes a (partial)

2 Hamming distance H (r , s) = |r ∪ s | − |r ∩ s | for two sets r and s .

3.1 introduction 53

asymmetric
candidates

symmetric
candidates

lookahead
neighbors

r

ϵ-neighborsprocessed

unprocessed

processing order

Figure 3.1: Symmetric candidates with ϵ-neighbors (blue); asymmetric candidates with looka-
head neighbors (red).

processing order on the neighborhood computations: all core points of the current
cluster must be expanded (i.e., their neighborhood must be computed) before any point
belonging to a di�erent cluster is processed.

A well-known clustering approach [20] is based on a self-join that precomputes and
materializes all neighborhoods. The precomputed neighborhoods are then used while
executing DBSCAN. This approach can leverage the asymmetric index and is e�cient
in runtime. Unfortunately, this join-based technique requires quadratic memory in
the worst case and su�ers from a large memory footprint in practice. For example, for
our social media dataset (LIVEJ) that stores the interests of 3.1M users, this approach
requires almost 100GB of memory.

Summarizing, applications that must cluster large collections of sets have two op-
tions, which we call Sym-Clust and Join-Clust. (1) Sym-Clust: Retrieve the full ϵ-
neighborhoods in the processing order imposed by DBSCAN using the symmetric
index. (2) Join-Clust: Compute and materialize neighborhoods in a join using the
e�ective asymmetric index. None of the options is satisfying: Sym-Clust runs almost
up to an order of magnitude slower than Join-Clust, while Join-Clust is infeasible for
many datasets and parameter settings due to its excessive memory usage.

We propose a new clustering algorithm, Spread, that computes correct DBSCAN
clusters using the asymmetric pre�x index. Spread runs in linear space and does
not need to materialize the (quadratic-size) neighborhoods. Spread avoids symmetric
neighbor computations, therefore reducing the number of neighbors retrieved by Sym-
Clust. So-called backlinks are introduced to achieve a correct clustering. Backlinks
are dynamically added and removed as required and occupy only a small fraction of
the memory that is used by materialized neighborhoods. Spread maintains a graph of
subclusters in a disjoint-set data structure and guarantees that connected components
in the resulting graph represent correct DBSCAN clusters.

In general, Spread can process data points in any user-de�ned order given an index
that retrieves the lookahead neighbors, i.e., all data points that follow the query point
in the user-de�ned processing order. In our usage scenario – set clustering – the
processing order is de�ned by the set sizes (ties broken arbitrarily) and the asymmetric
pre�x index retrieves lookahead neighbors.

Summarizing, our contributions are the following:

54 scaling density-based clustering to large collections of sets

• We propose Spread, a novel algorithm for partitioning large collections of sets
into DBSCAN clusters. To the best of our knowledge, this is the �rst linear space
DBSCAN-compliant algorithm that leverages the asymmetric pre�x index for
sets.

• We introduce the new concept of backlinks that keep su�cient information
to build correct clusters independently of the processing order that the user
imposes on Spread. We prove invariants for backlinks and the correctness of our
approach.

• Our extensive empirical evaluation on 13 real-world datasets suggests that Spread
is as fast as Join-Clust (that materializes all neighborhoods) while being competi-
tive in memory usage with Sym-Clust (that computes all neighborhoods on the
�y).

The remainder of this chapter is organized as follows. In Section 3.2, we cover
the background on ϵ-neighborhood and set similarity, indexing techniques for sets,
and density-based clustering, and we de�ne the density-based set clustering problem.
Section 3.3 presents the two baseline approaches for density-based set clustering, Join-
Clust and Sym-Clust. In Section 3.4, we present Spread, our time- and space-e�cient
solution for density-based set clustering. We evaluate our solution against the baseline
algorithms and discuss the results in Section 3.5. Related work is summarized in
Section 3.6. Finally, Section 3.7 concludes this chapter.

3.2 background & problem definition

We revisit set similarity indexes and density-based clustering, and de�ne our problem.
To simplify the presentation, we focus on pre�x indexes for the Hamming distance.
Our results, however, extend to other distance and similarity measures (e.g., Jaccard or
Cosine) and the respective indexes [37, 81, 108]. The required adaptations of the index
that have been studied in the context of set similarity joins [81, 130] (e.g., pre�x length,
size lower bound, equivalent overlap) also apply to our scenario.

3.2.1 Set Similarity and ϵ-Neighborhood

R is a collection of n unique sets, each set r ∈ R consists of unique tokens t1, . . . , tm ,
|r | =m. The processing order, �, is a total order de�ned over R. The similarity between
two sets r and s is assessed by the Hamming distance, H (r , s) = |r ∪ s | − |r ∩ s |, which
counts the number of tokens that exist only in one of the sets, e.g., H (r1, r2) = 4 and
H (r2, r3) = 3 for the sets in Figure 3.2.

The ϵ-neighborhood of set r includes r and all sets within distance ϵ from r , Nϵ (r) =
{s ∈ R | H (r , s) ≤ ϵ}. A region query on r computesNϵ (r). A set r splits its ϵ-neighborhood
into two disjoint parts based on the processing order: the lookahead neighbors that
follow r in processing order, N �ϵ (r) = {s ∈ Nϵ (r) | s � r } and the preceding neighbors,
N ≺ϵ (r) = {s ∈ Nϵ (r) | s ≺ r }.

3.2 background & problem definition 55

3.2.2 Indexing Techniques for Sets

prefix filter and inverted index A naive approach computes a region query
Nϵ (r) by verifying the predicate H (r , s) ≤ ϵ for all sets s ∈ R. An e�ective indexing
technique, which was originally developed for set similarity joins [16, 81], is based on
the so-called pre�x �lter. The pre�x, πr , of a set r consists of the �rst π tokens of r
according to some total token order (which must be the same for all sets). The pre�x
length depends on the distance function and is π = ϵ + 1 for the Hamming distance.
Figure 3.2 shows the pre�x of three sets for distance threshold ϵ = 3 and a numerical
token order. The pre�x �lter works best if the tokens in the pre�x are infrequent, thus
the tokens are typically ordered by ascending global token frequency.

A set s ∈ R can be in the ϵ-neighborhood Nϵ (r) only if the pre�xes of r and s share
at least one token, i.e., H (r , s) ≤ ϵ ⇒ πr ∩ πs , ∅ (assuming |r | + |s | > ϵ ; otherwise r
and s are always similar). Therefore, if two sets do not share a token in the pre�x, the
pair can be safely pruned. If two sets r and s share a pre�x token, (r , s) is a candidate
pair and must undergo veri�cation, i.e., the predicate H (r , s) ≤ ϵ must be evaluated.
Candidates that fail veri�cation are false positives. Mann et al. [81] discuss e�cient
pre�x-based veri�cation.

symmetric prefix index An inverted index on the pre�x tokens is used to
retrieve candidate pairs e�ciently. The inverted index maps pre�x tokens to sets that
contain that token in the pre�x. A lookup of set r retrieves all lists of the pre�x tokens
of r . The union of these lists (except r itself) are the candidates of r . The index is
symmetric and returns the ϵ-neighborhood of r .

For example, the candidates for r2 returned by the symmetric index, π = ϵ + 1 = 4, in
Figure 3.2 are {r1, r3} (resulting from the union of [r2, r3] for token 1, [r2, r3] for token
2, [r1, r2] for token 5, and [r1, r2] for token 6). Candidate r1 is a false positive since
H (r1, r2) > ϵ ; r3 is a true positive due to H (r2, r3) ≤ ϵ .

3 4 5 6 7 8
r1

1 2 5 6 7 8
r2

1 2 4 7 8
r3

1

r2
r3

2

r2
r3

3

r1

4

r1
r3

5

r1
r2

6

r1
r2

7

r3

1

r2
r3

2

r2
r3

3

r1

4

r1

Sym. index: π = 4 Asym. index: π i = 2

Figure 3.2: Symmetric and asymmetric pre�x index, ϵ = 3.

asymmetric prefix index We construct an asymmetric pre�x index that returns
only the lookahead neighbors, N �ϵ (r). To this end, we de�ne a length-based processing
order on R (longest to shortest): r precedes s if |r | > |s |, i.e., |r | > |s | ⇒ s � r ; ties
(|r |= |s |) are broken by the lexicographic order of the sorted sets.

56 scaling density-based clustering to large collections of sets

Since we are interested only in sets s ∈ Nϵ (r) that are no larger than r , |s | ≤ |r |, we
need to index only a subset of the pre�x tokens: the tokens in the so-called indexing
pre�x [130]. The so-called probing pre�x of the lookup set, r , remains of length π = ϵ + 1.
For the Hamming distance, the indexing pre�x is of length π i =

⌊ ϵ
2 + 1

⌋
. For ϵ > 0,

the probing pre�x is always longer than the indexing pre�x, e.g., π = 4 and π i = 2 for
ϵ = 3. A shorter pre�x results in fewer candidates and renders the asymmetric index
more e�ective than its symmetric counterpart.

In the case of r2, the asymmetric index, π i = 2, in Figure 3.2 returns only a true posi-
tive candidate, r3. The false positive candidate, r1, which is returned by the symmetric
index, is avoided.

3.2.3 Density-Based Clustering

We formally de�ne DBSCAN clusters and the related concepts. A set r represents
a point to be clustered. The density of r is the number of ϵ-neighbors |Nϵ (r)| (cf.
Section 3.2.1).
Core, Border, Noise. A set r is a core point i� the ϵ-neighborhood of r contains at

least minPts sets: r is core⇔ |Nϵ (r)| ≥ minPts. A set s is a border point i� it is in the
ϵ-neighborhood of a core point r and s is not core: s is border⇔ s ∈ Nϵ (r) ∧ |Nϵ (r) | ≥
minPts∧ |Nϵ (s) | < minPts. All remaining sets in R are noise. We denote the set of core
and border points with C andB, respectively. The set of noise points isN = R \ (C ∪ B).
Density-Reachability. Let r , s ∈ R and r is core: s is directly density-reachable from

r i� s is in the ϵ-neighborhood of r : r I s ⇔ s ∈ Nϵ (r). If there is a sequence of sets
r1, r2, . . . , rk with r1 = r and rk = s , ri I ri+1 for 1 ≤ i < k , s is density-reachable from
r , denoted r I . . . I s . Two sets r , s are density-connected if there is a set x s.t. both r

and s are density-reachable from x .
A density-based cluster is a subset Ci ⊆ R that satis�es two criteria [104]:

1. Maximality M: For any two sets r , s ∈ R, r ∈ Ci . If s is density-reachable from r ,
then s ∈ Ci . Formally,

∀r , s ∈ R : r ∈ Ci ∧ r I . . . I s =⇒ s ∈ Ci

2. Connectivity C: For any two sets r , s in Ci , there is a set x that density-connects
r and s . Formally,

∀r , s ∈ R : r , s ∈ Ci =⇒ ∃x ∈ Ci : r J . . . J x I . . . I s

dbscan clustering A border point may be part of multiple density-based clusters
such that the clusters overlap. We de�ne the DBSCAN clustering that partitions the
data into non-overlapping clusters. The standard DBSCAN algorithm [40] produces a
DBSCAN clustering.
De�nition 3.2.1. Let R∗ = R \ N and C1,C2, . . . ,Ck be density-based clusters such that⋃k

i=1Ci = R∗. A DBSCAN clustering is a partitioning Γ = {C ′1,C ′2, . . . ,C ′k },C ′i ⊆ Ci , such
that

⋃k
i=1C

′
i = R∗, C ′i ∩C ′j = ∅ for i , j.

3.2 background & problem definition 57

A subclustering of a cluster Ci , ψi = {c1, c2, . . . , cl }, is a partitioning of Ci into
1 ≤ l ≤ |Ci | non-empty, disjoint subclusters, c j ⊆ Ci , such that

⋃l
j=1 c j = Ci , c j ∩ck = ∅

for j , k .
A subcluster graph of R∗ is an undirected graph in which nodes are subclusters and

an edge between two nodes can only exist if the respective nodes are in the same
DBSCAN cluster.

3.2.4 The DBSCAN Algorithm

The standard DBSCAN algorithm [40] forms clusters by repeatedly picking a seed
point from the set of unvisited data points (initially all points are unvisited). If the
seed is a core point, it forms a new cluster with all points that are density-reachable
from the seed and are not yet assigned to a cluster. The set of density-reachable points
is computed by recursively adding the ϵ-neighbors of all core points to the current
cluster. The algorithm terminates when all points have been visited. Points that cannot
be assigned to a cluster are noise.

Table 3.1: Notation overview.
Notation Description
R a collection of sets
r , s ,x sets of R
|r | cardinality of set r
r ≺ s , r � s r precedes/succeeds s (in R)
H (r , s) the Hamming distance of two sets r , s
π ,π i probing/indexing pre�x
ϵ distance threshold
minPts minimum density s.t. a set r is core
Nϵ (r) full ϵ-neighborhood of r
N ≺ϵ (r) ,N �ϵ (r) preceding/lookahead neighbors of r
r I s s is directly density-reachable from r

r I . . . I s s is density-reachable from r

C,B,N the set of core, border, and noise sets
Ci a density-based cluster with id i

3.2.5 Problem Statement

De�nition 3.2.2 (Density-Based Set Clustering). Given a collection of sets R, a distance
threshold ϵ , and the neighborhood density minPts, the goal is to �nd a DBSCAN clustering
Γ = {C1,C2, . . . ,Ck } of R.

For sets, asymmetric indexes with a lookahead neighbor function N �ϵ (r) promise the
best performance (cf. Section 3.2.2). Given an ordering � on R, we strive for a time-
and space-e�cient algorithm that solves the density-based set clustering problem with
an asymmetric index.

58 scaling density-based clustering to large collections of sets

running example Figure 3.3 shows an example collection R of ten sets, r1–r10,
and their neighborhoods for Hamming distance ϵ = 3. Sets r3, r5, r6, and r10, are core
sets; all sets r1–r10 form a single cluster.

r9

r5

Nϵ (r5)

Nϵ (r6)

Nϵ (r1)

r10

r2

r8
r6

r3r1

r7
r4

ϵ

. . . core set

. . . border set

Collection R:

r10 {1, 2, 3, 4}
r9 {2, 3, 4, 5}
r8 {3, 4, 7, 8}

r7 {7, 8, 10, 11}
r6 {1, 2, 4, 7, 8}
r5 {1, 3, 4, 5, 6}

r4 {7, 8, 9, 10, 11}
r3 {1, 4, 7, 8, 10, 11}

r2 {1, 3, 4, 5, 6, 12, 13, 14}
r1 {1, 4, 7, 8, 10, 11, 12, 13, 14}

Figure 3.3: Running example, ϵ = 3, minPts = 4.

3.3 baseline approaches

This section presents two baseline solutions for the density-based set clustering problem.
(1) Sym-Clust is memory-e�cient and follows the standard DBSCAN approach with
the symmetric pre�x index to answer neighborhood queries on the �y. (2) Join-Clust
is speed-optimized and materializes all ϵ-neighborhoods using a state-of-the-art set
similarity join algorithm [16] (which leverages the asymmetric pre�x index) before the
standard DBSCAN algorithm is executed.

Both baselines leverage state-of-the-art set indexes. We are not aware of other
previous solutions that can outperform Sym-Clust or Join-Clust for the density-based
set clustering problem. Note that using the standard DBSCAN [40] (rather than some
advanced techniques presented in later works, cf. Section 3.6) is not a limiting factor:
Most of the overall execution time is spent computing the neighborhoods, and pre�x-
based indexes are highly e�cient in combination with e�cient veri�cation [81].

3.3.1 Sym-Clust: DBSCAN with Inverted Index

When the standard DBSCAN algorithm (cf. Section 3.2.4) picks a seed point that is
core, it forms a cluster with all points that are density-reachable from the seed. The
density-reachable points are computed by pushing all core neighbors of the seed onto
a stack. Then, each point on the stack is processed in the same manner (i.e., all its core

3.3 baseline approaches 59

neighbors are pushed onto the stack) until the stack is empty. All neighbors of core
points retrieved in this process belong to the cluster.

The neighborhood queries will overlap to some extent. Assume r is processed before
s , s ∈ Nϵ (r), then |Nϵ (s) ∩Nϵ (r)| ≥ 2 (at least r and s are in both neighborhoods). Since
r assigns all its neighbors to the current cluster, only the non-overlapping neighbors of
s , Nϵ (s) \ Nϵ (r), will further increase the cluster.

Figure 3.4 illustrates this observation for the neighborhoods of two example points r
(black circle) and s (red circle): only the new, non-overlapping area of Nϵ (s) (shaded in
red) is relevant for expanding the cluster.

r ϵs r , s . . . core sets
. . . new part

Figure 3.4: Redundant neighborhood queries.

The standard DBSCAN algorithm requires the use of a symmetric index since it
assumes to see all neighbors of a point s when s is processed. The asymmetric index is
not compatible with the standard DBSCAN algorithm: We cannot impose an order on
the points such that all non-overlapping neighbors of s follow s in the processing order.
Further, the size of the neighborhood of s , |Nϵ (s)|, is required to decide its core status.

Figure 3.5 shows the symmetric pre�x index for our running example, ϵ = 3,
π = ϵ + 1 = 4. We probe r8 = {3, 4, 7, 8}. The pre�x of r8 consists of all tokens
in r8 (due to |r8 | = π). The union of the respective index lists yields the candidates
{r2, r5, r9, r10, r1, r3, r6, r4, r7}. Note that the candidates include both sets that are smaller
and sets that are larger than r8.

The so-called length �lter [16], an optimization of the symmetric pre�x index that
also applies to its asymmetric counterpart, prunes candidates r2 and r1. Due to their
length di�erence to r8, they cannot be in the ϵ-neighborhood of r8. By ordering the lists
in processing order (i.e., longer sets precede shorter sets, as illustrated in Figure 3.5),
the length �lter can prune the head (sets that are too long) and the tail (sets that are
too short) of a list without inspecting all elements in head and tail, respectively.

All candidates that are not pruned by the length �lter must undergo veri�cation.
Only r6 passes veri�cation, therefore Nϵ (r8) = {r8, r6}, and r8 is classi�ed as non-core
(minPts = 4).

complexity analysis We probe each set r ∈ R against the index once. With cost
C for an index lookup and n = |R |, the runtime is O(n ·C); C = O(n) since r may have
O(n) neighbors, thus the overall runtime of Sym-Clust is O(n2). The symmetric index
is of linear size leading to space complexity O(n).

60 scaling density-based clustering to large collections of sets

1

r1
r2
r3
r5
r6
r10

2

r6
r9
r10

3

r2
r5
r8
r9
r10

4

r1
r2
r3
r5
r6
r8
r9
r10

5

r2
r5
r9

7

r1
r3
r4
r6
r7
r8

8

r1
r3
r4
r7
r8

9

r4

10

r4
r7

11

r7

Figure 3.5: Symmetric pre�x index on r1-r10, ϵ = 3, π = 4.

1

r1
r2
r3
r5
r6
r10

2

r6
r9
r10

3

r2
r5
r8
r9

4

r1
r3
r8

7

r4
r7

8

r4
r7

Figure 3.6: Asymmetric pre�x index on r1-r10, ϵ = 3, π i = 2.

3.3.2 Join-Clust: Materialized Neighborhoods

Join-Clust executes a set similarity self-join on R and materializes the ϵ-neighborhoods
in main memory. The self-join traverses all sets of r ∈ R in processing order and com-
putes their lookahead neighbors, N �ϵ (r). The lookahead neighbors of r are appended
to the list of r ’s neighbors, and r is appended to the neighborhood lists of all s ∈ N �ϵ (r).
After processing all sets, the neighborhood list of each set r ∈ R is complete and stores
Nϵ (r).

Next, standard DBSCAN (cf. Section 3.2.4) is executed to form clusters using the
materialized neighborhoods. Algorithms 9–12 implement the similarity join with
neighborhood materialization, index creation, probing, and e�cient veri�cation [81].

Mann et al. [81] found that the pre�x-based index in combination with the length
�lter can be considered state of the art given an e�cient veri�cation procedure (which
we use).

Figure 3.6 shows the asymmetric pre�x index for our running example, ϵ = 3, π i = 2.
We probe r8 = {3, 4, 7, 8} and look up the lists of the tokens 3, 4, 7, and 8 (the length of
the probing pre�x is π = 4). Since we are only interested in the lookahead neighbors,
i.e., all neighbors that follow r8 in processing order, we need to inspect the lists only
starting from the point where r8 or a set ri � r8 appears. The length �lter does not
prune any candidate in this example, and the candidate set is {r9}. Since H (r8, r9) > ϵ ,
the lookahead neighborhood of r8 is empty, N �ϵ (r8) = ∅.

3.3 baseline approaches 61

Algorithm 9: Materialize-Neighborhoods(R, ϵ)
Input: Collection of sets R, distance threshold ϵ
Result: Materialized neighborhoods of R w.r.t. ϵ

1 I ← Create-Index (R, ϵ);
2 pairs ← ∅ // Result set of similar pairs

3 foreach r ∈ R in processing order do
4 M ← Probe (r , I , ϵ) // candidates with prefix overlaps

5 foreach (s ,po) ∈ M do // po . . . prefix overlap

6 if Verify-Pair (r , s , ϵ ,po) then
7 pairs ← pairs ∪ {(r , s)}

8 neiдhborhoods ← new associative array of size |R |;
9 foreach (r , s) ∈ pairs do
10 neiдhborhoods[r] ← neiдhborhoods[r] ∪ {s};
11 neiдhborhoods[s] ← neiдhborhoods[s] ∪ {r };
12 return neiдhborhoods

Algorithm 10: Create-Index (R, ϵ)
Input: Collection of sets R, distance threshold ϵ
Result: Inverted index of R w.r.t. ϵ

1 I ← ∅ // inv. index of set prefixes, Ir [p] . . . list of token r [p]
2 foreach r ∈ R do
3 π ← ⌊ ϵ+2

2
⌋
// indexing prefix length of r

4 for p ← 1 to π do Ir [p] ← Ir [p] ∪ {r };
5 return I

Algorithm 11: Probe (r , I , ϵ)
Input: Probing set r , inv. index I , distance threshold ϵ
Result: Set of candidates for r w.r.t. ϵ
// M maps a candidate s to its prefix overlap with r

1 M ← new associative array // candidates

2 π ← ϵ + 1 // probing prefix length of r
3 lbr ← |r | − ϵ // size lower bound wrt. r
4 for p ← 1 to π do
5 foreach s ∈ Ir [p] in proc. order do // list of token r [p]
6 if |s | < lbr then break ;
7 else // add candidate

8 if s < M thenM[s] ← 0; // init.

9 M[s] ← M[s] + 1 // incr. overlap of (r , s)

10 returnM

62 scaling density-based clustering to large collections of sets

Algorithm 12: Verify-Pair (r , s , ϵ ,po)
Input: Probing set r , candidate set s , distance threshold ϵ , pre�x overlap po

Result: True i� r and s are similar w.r.t. ϵ , false otherwise
// cf. Mann et al. [81] for prefixes, equiv. overlaps, and Verify proc.

1 πr ,πs ← probing resp. indexing pre�x length of r resp. s;
2 wr ,ws ← πr - resp. πs -th token in r resp. s;
3 t ← equivalent overlap for r , s , and ϵ ;
4 if wr < ws then
5 return Verify (r , s , t ,po,πr + 1,po + 1)
6 return Verify (r , s , t ,po,po + 1,πs + 1)

In the context of the self-join, r8 will be retrieved as a lookahead neighbor of r6,
which is processed before r8. Therefore, the neighborhood list of r6 will store r8 and
vice versa.

Join-Clust produces fewer candidates than Sym-Clust and is therefore faster. How-
ever, the e�ciency of Join-Clust comes at the cost of a larger memory footprint since
all neighborhoods must be materialized.

complexity analysis A neighborhood query is a constant-time lookup and a
traversal of O (|Nϵ (r)|) neighbors. In the worst case, the join reports O (

n2) pairs.
Consequently, materializing the neighborhoods takes O (

n2) time and space for n = |R |.
The asymmetric pre�x index requires only O (n) space and does not dominate memory
usage.

3.4 the spread algorithm

We present Spread, a novel time- and space-e�cient solution for the density-based
clustering problem. Spread leverages the e�ective asymmetric index and clusters all
sets by traversing the sets in processing order. We identify key challenges that must be
solved, discuss the algorithm, prove its correctness, analyze time and space complexity,
and sketch a multi-core extension.

3.4.1 Key Challenges

Since Spread uses an asymmetric neighborhood index, a processing order, �, must be
imposed on the data points, and an index lookup of query point r retrieves only the
lookahead neighbors, N �ϵ (r). To achieve a correct clustering without materializing the
neighborhoods, three key challenges must be solved.

In the following discussion, we assume that all sets of R are processed in processing
order. When the current set ri is to be processed, we know the core status of all
preceding sets, r j ≺ ri , but we do not know the core status of any unprocessed sets,
rk � ri . We further assume that all sets r ∈ R that are directly density-reachable from
any r j that precedes ri (i.e., are neighbors of a core point r j ≺ ri) are assigned to the
same cluster as the core point r j ; this may also include sets rk � ri that have not been
processed yet.

3.4 the spread algorithm 63

core status A set ri is core if |Nϵ (ri)| ≥ minPts. Sym-Clust and Join-Clust have
access to the full neighborhood, Nϵ (ri), thus deciding the core status of ri is trivial. In
contrast, Spread sees only the lookahead neighbors, N �ϵ (ri). To identify the core status
of ri , however, additional knowledge about the size of the preceding neighborhood,
N ≺ϵ (ri), is required.

Consider probing ri = r5 in our running example. According to our assumptions,
the core status of sets r1–r4 is known (only r3 is core), and all neighbors of r3 are in
cluster C3 = {r1, r3, r4, r6, r7}. An index lookup of r5 returns N �ϵ (r5) = {r9, r10}. Since��N �ϵ (r5)

�� + 1 = 3 < 4 = minPts we cannot decide if r5 is core. In fact, r5 should be
classi�ed core since the full neighborhood is Nϵ (r5) = {r2, r5, r9, r10} (cf. red circle in
Figure 3.3).

border vs. noise Assume that the current set ri is a non-core point that is not
assigned to any cluster. We need to decide if ri is border or noise. A border point has at
least one core point in its neighborhood. None of the preceding neighbors, r j ∈ N ≺ϵ (ri),
is core, otherwise ri would be assigned to the cluster of r j . Thus, ri is core i� one of
the lookahead neighbors is core. Unfortunately, we do not know the core status of the
lookahead neighbors and can therefore not label ri as border or noise.

Assume a core point, rk ∈ N �ϵ (ri), among the lookahead neighbors of ri . When rk is
processed, rk will not see ri in its lookahead neighborhood since ri ≺ rk . Therefore,
ri will not be included into the cluster of rk and will wrongly be classi�ed noise. The
challenge is to correctly decide the border status of ri despite seeing only the lookahead
neighbors of ri and rk .

In our running example, r1 is processed �rst. Thus, no core points are known and no
clusters exist. N �ϵ (r1) = {r3} and r1 remains noise (cf. blue circle in Figure 3.3). When
the neighbor r3 of r1 is processed, r3 will be detected as a core point and start a new
cluster. However, since r3 only sees its lookahead neighbors, N �ϵ (r3) = {r4, r6, r7}, r1 is
not included into the cluster and is not detected as a border point.

disconnected clusters. Assume that the current set ri is core and there is a
core point r j ≺ ri in a clusterCj , ri < Cj . The current set ri will assign all its lookahead
neighbors to its cluster, Ci = Ci ∪N �ϵ (ri) (Ci can be a new cluster started by ri or an
existing cluster to which ri belongs). Unfortunately, we cannot assume that Ci and Cj

are indeed distinct clusters: there can be a core point rk � ri that density-reaches both
ri and r j , i.e., Ci and Cj should form a single cluster. In general, multiple subclusters
of the same DBSCAN cluster may grow independently. The challenge is to identify
subclusters that should be merged and to merge them e�ciently.

We process the current set ri = r6 in our running example. According to our
assumptions, we know that r3 and r5 are core and we are aware of two clusters, C3 =

{r1, r3, r4, r6, r7}, C5 = {r2, r5, r9, r10}. In addition, assume that we know that r6 is core.
Then, r6 extends its current cluster,C3, with its lookahead neighbors N �ϵ (r6) = {r8, r10}.
Note that r10 is already part of cluster C5. Since we do not know the core status of
r10, we cannot decide if C5 and C3 should be merged into a single cluster. If r10 is core,
r5 and r3 are density-reachable from r10 and should be in the same cluster. If r10 is a

64 scaling density-based clustering to large collections of sets

border point, however, the clusters must not be merged, and r10 can be assigned to
either C5 or C3.

3.4.2 Data Structures

disjoint-set The disjoint-set (or union-�nd) data structure maintains a dynamic
collection of non-overlapping sets for n objects in O (n) space [33, 112]. A typical
use case is the e�cient computation of (minimum) spanning trees. It supports three
operations: (1) For a given element u, make_set (u) creates a new (singleton) set that
containsu. (2) The union (u,v) operation merges the two sets that containu resp. v into
a new set. (3) �nd_set (u) returns the representative for the set that contains u or∞ if
u is not found. The amortized worst-case time complexity is Θ (α (n)) for all operations,
α (.) being the inverse Ackermann function. In practice, α (n) is considered a constant.
In our setting, set elements are subclusters, and the disjoint-set data structure links
subclusters that belong to the same DBSCAN cluster.

backlinks The backlinks data structure of a set r ∈ R is a collection of unique
references to other sets s that precede r , s ≺ r . The backlinks bl support the add
operation, bl ∪ {s}, which adds a reference to a new set s in time O (1) (on average).
Depending on the type of sets that are referenced in the backlinks, we distinguish core
and non-core backlinks, denoted c_bl and nc_bl , respectively. We implement backlinks
as unordered sets of integer identi�ers.

3.4.3 The Algorithm

Algorithm 13 shows the pseudocode of Spread. We use the following notation: r is the
current probing set, s � r is a lookahead neighbor, and x ≺ r is a preceding neighbor.
Initially, all sets are noise, i.e., their cluster identi�er is −∞, ∀r ∈ R : r .cid = −∞.
Although we initialize all sets in Algorithm 13 explicitly (lines 3–4), this can also be
done during indexing (cf. Algorithm 10).

algorithm outline Spread proceeds in three main steps: (1) A counter and the
processing order guarantee that the cardinality of the ϵ-neighborhood is known when
a set is processed despite using the asymmetric pre�x index. (2) Each set is assigned
to a subcluster solely based on its lookahead neighboorhood. Subclusters of the same
DBSCAN cluster are linked in a subcluster graph. Backlinks ensure that we do not
miss border sets or links between subclusters. (3) Each connected component in the
subcluster graph represents a DBSCAN cluster.

core status A set r is core if |Nϵ (r) | ≥ minPts. In Spread, however, only N �ϵ (r)
is computed. To capture the cardinality of N ≺ϵ (r), we store a density counter with
each set r , denoted r .dens . Initially, ∀r ∈ R : r .dens = 1. For every lookahead neighbor
s ∈ N �ϵ (r), r .dens and s .dens are incremented (due to the symmetry of the distance).
Core set identi�cation is highlighted in green .

3.4 the spread algorithm 65

border vs. noise A probing set r that is not core is a border set i� ∃y ∈ Nϵ (r) :
y is core. Due to our processing order and the fact that only N �ϵ (r) is computed, the
existence of a core neighbor y may be unknown when r is probed. However, for each
s ∈ N �ϵ (r), we know that r is part of N ≺ϵ (s). We store this information by adding r

to the non-core backlinks nc_bl[s] of each s ∈ N �ϵ (r) (lines 31–33). Then, the �rst
s ∈ N �ϵ (r) that becomes core claims r (and all other unassigned sets in nc_bl[s]) as
border point for its subcluster. If none of the neighbors s ∈ N �ϵ (r) becomes core, then
r remains noise. Lines 26–30 deal with a special case: If any s ∈ N �ϵ (r) is already
core when r is probed, then s claims r immediately without adding r to its non-core
backlinks. The relevant code lines are marked in red .

subcluster linkage If the probing set r is core and a core neighbor y is part of
another subcluster, the subclusters of r and y must be linked in our subcluster graph.
The subcluster graph represents all connected components of subclusters, each of
which is a DBSCAN cluster. We use the disjoint-set data structure ds to track the
connected components. Two subclusters u,v are linked by ds .union(u,v). We may
not be able to determine if there is a set s ∈ N �ϵ (r) that is core before s is probed. We
use the core backlinks, c_bl , to book-keep potential subclusters for linkage: r adds its
subcluster identi�er to c_bl[s] of each s ∈ N �ϵ (r) (lines 22-23). After N �ϵ (r) has been
processed, a link between the subcluster of r and every entry in c_bl[r] is created (line
24). The special case when s is already core allows us to create the link immediately
without using core backlinks (lines 20–21). Linkage is only required if two subclusters
coalesce (condition in line 19). Otherwise, r simply claims s ∈ N �ϵ (r) for its subcluster
(lines 17–18). Linkage of subclusters is highlighted in blue .

All backlinks of r are released after r has been processed to save memory (line 34).
The subcluster graph in ds is used to assign consistent cluster IDs in a �nal scan over
R (lines 35–36).

3.4.4 Correctness

We show that Algorithm 13 partitions R into DBSCAN clusters (cf. De�nition 3.2.1). Set
ri ∈ R is the i-th set of R in processing order. We prove the correctness by induction over
i and increasing subsets Ri ⊆ R. R0 = ∅, Ri = Ri−1 ∪ {ri } ∪N �ϵ (ri) for 1 ≤ i ≤ n = |R |,
thus Rn = R. In the following, we sketch the proofs of the invariants that must be
shown.

core status The core status of set ri is determined in the i-th iteration of the
main loop. ri is core if minPts ≤ |Nϵ (ri)| = 1+

��N ≺ϵ (ri)��+ ��N �ϵ (ri)��. In line 5, ri .dens =
1+

��N ≺ϵ (ri)��. Lines 6–11 compute N �ϵ (ri). The index lookup in line 6 returns candidate
set M , N �ϵ (ri) ⊆ M ⊆ {s | s � ri }. Every set s ∈ M is veri�ed in line 9 such that N �ϵ (ri)
is available starting from line 12.

66 scaling density-based clustering to large collections of sets

Algorithm 13: Spread(R, ϵ , minPts)
Input: Collection of sets R, distance threshold ϵ , min. density minPts
Result: A correct DBSCAN clustering of R w.r.t. ϵ , minPts

1 ds ← new disjoint-set; nc_bl , c_bl ← new backlinks;
2 I ← Create-Index (R, ϵ);
3 foreach r ∈ R do
4 r .dens ← 1; r .cid ← −∞; ds .make_set (r .id);
5 foreach r ∈ R in processing order do
6 M ← Probe (r , I , ϵ);
7 N �ϵ (r) ← ∅;
8 foreach (s ,po) ∈ M do // po ... prefix overlap

9 if Verify-Pair (r , s , ϵ ,po) then
10 r .dens ← r .dens + 1; s .dens ← s .dens + 1;
11 N �ϵ (r) ← N �ϵ (r) ∪ {s};

12 if r .dens ≥ minPts then // r is core

13 if r .cid = −∞ then r .cid ← r .id ;
14 foreach x ∈ nc_bl[r] do // claim border sets x ≺ r
15 if x .cid = −∞ then x .cid ← r .cid ;

16 foreach s ∈ N �ϵ (r) do // s � r
17 if s .cid = −∞ then // claim unclaimed s � r
18 s .cid ← r .cid

19 else if r .cid , s .cid then // s already claimed

20 if s .dens ≥ minPts then // s is core

21 ds .union (r .cid , s .cid) // link subclusters

22 else // remember core neighbor r

23 c_bl[s] ← c_bl[s] ∪ {r .cid}

24 foreach x ∈ c_bl[r] do ds .union (r .cid ,x);
25 else // r is not core, i.e., r .dens < minPts

26 if r .cid = −∞ then // claim potential border set r

27 foreach s ∈ N �ϵ (r) do
28 if s .dens ≥ minPts then // s is core

29 if s .cid = −∞ then s .cid ← s .id ;
30 r .cid ← s .cid ; break;

31 if r .cid = −∞ then // remember potential border set r

32 foreach s ∈ N �ϵ (r) do
33 nc_bl[s] ← nc_bl[s] ∪ {r }

34 release c_bl[r] and nc_bl[r] // not needed anymore

35 foreach r ∈ R do // final assignment of cluster IDs

36 if r .cid , −∞ then r .cid ← ds .�nd_set (r .cid);

3.4 the spread algorithm 67

Lemma 3.4.1. Algorithm 13 correctly identi�es all core sets in R.

Proof Sketch. We show that at the start of the i-th iteration in line 5, for all rk and r j ,
1 ≤ k < i ≤ j the following invariants hold: (I1) rk .dens = |Nϵ (rk)|; (I2) r j .dens =
1 +

��{rk | r j ∈ N �ϵ (rk)}��, i.e., ri .dens = 1 +
��N ≺ϵ (ri)��. Further, (I3) in line 12 of the i-th

iteration, ri .dens = |Nϵ (ri)|, i.e., Algorithm 13 correctly identi�es the core status of
ri . �

border vs. noise Lines 25–33 cover the case that ri is not core. If any s ∈ N �ϵ (ri)
quali�es as core, s claims ri . Otherwise, ri is stored in the non-core backlinks nc_bl[s]
of every s ∈ N �ϵ (ri) (lines 31–33). The next core neighbor in processing order claims ri
(lines 14–15) such that all border sets are assigned to a cluster.

Lemma 3.4.2. Algorithm 13 correctly clusters all border sets in R.

Proof Sketch. At the start of the i-th iteration, the following invariant holds for all
border sets rk ∈ B, 1 ≤ k < i: if rk is not stored in nc_bl[s] for any s ∈ N �ϵ (rk), s = ri
or s � ri , then rk is assigned to the cluster of a core point in its neighborhood. �

subcluster linkage Lines 12–24 cover the case that ri is core. Each core point
may form a subcluster on its own or together with other core points. We must ensure
that all subclusters of the same DBSCAN cluster are linked in the disjoint-set, ds .

Lemma 3.4.3. Algorithm 13 correctly links all subclusters in R.

Proof Sketch. At the start of the i-th iteration, the following invariant holds for all core
neighors c ∈ CN (rk) = Nϵ (rk) ∩ C of a core set rk ∈ C, 1 ≤ k < i: (a) c and rk have
the same cluster representative (in ds), or (b) c is stored in some c_bl[s], s ∈ N �ϵ (rk),
s = ri or s � ri . �

Theorem 3.4.4. Algorithm 13 returns a correct set clustering Γ = {C1,C2, . . . ,Ck } of R
according to De�nition 3.2.1.

Proof Sketch. By Lemmata 3.4.1–3.4.3 and due to our �nal scan over R (lines 35–36),
x .cid = ds .�nd_set (x .cid) holds for all x ∈ R. Initially, x .cid = −∞ for all x ∈ R. The
cluster IDs are updated only for border and core sets. Consequently, x .cid = −∞ holds
for all x ∈ R \ (C ∪ B) ≡ N , i.e., also noise is correctly identi�ed. �

3.4.5 Complexity Analysis

Memory. The asymmetric pre�x index requires O (n) space. In addition, Spread main-
tains the following data structures. (i) A density counter for each set r ∈ R requires
O (n) space. (ii) A disjoint-set data structure with at most O (n) entries, i.e., the disjoint-
set structure requires O (n) space [112]. (iii) In the worst case, we allocate two backlink
structures for each r ∈ R, i.e., O (n) backlinks. We release c_bl[r] and nc_bl[r] after
probing r . Backlinks are only extended in lines 23 and 33. However, both lines are
executed i� � s ∈ N �ϵ (r) : s is core. Set s is core i� s .dens ≥ minPts, and the density is

68 scaling density-based clustering to large collections of sets

updated for every neighbor, therefore any backlink holds at most minPts entries. As
a result, no more than O (n ·minPts) entries are allocated, thus requiring O (n) space
since minPts and ϵ are constants. Runtime. For each r ∈ R, we process O (��N �ϵ (r)��)
neighbors and the backlinks of r if it is core. Recall that the disjoint-set operations take
constant time. Therefore, the �nal for-loop (lines 35–36) runs in O (n) time. Overall,
Spread runs in O (

n2) time and O (n) space.

3.5 experimental evaluation

algorithms We compare our solution, Spread, against the two baseline approaches
Sym-Clust and Join-Clust (cf. Section 3.3). All algorithms are single-threaded C++
implementations (2017 standard). Our implementations of Spread, Join-Clust, and
the index of Sym-Clust follow the guidelines by Mann et al. [81], e.g., regarding
symmetric and asymmetric pre�x index, candidate generation, and optimized pre�x-
based veri�cation.

datasets We execute all experiments on 13 real-world datasets: (a) Nine of the
datasets where previously used for benchmarking set similarity joins [45, 81]: BMS-
POS, DBLP, ENRON, FLICKR, KOSARAK, LIVEJ, NETFLIX, ORKUT, and SPOT. For a
description of the datasets and preprocessing instructions3 we refer to Mann et al. [81].
(b) Four large real-world datasets from the process mining domain, CELONIS1–4,
that store one set per process. Compared to most datasets of the join benchmark,
the universe size of these datasets is rather small. Table 3.2 summarizes important
characteristics of our benchmark data.

Due to space constraints we omit detailed results for the following datasets: (a) DBLP,
ENRON, and NETFLIX show very low runtimes (< 4s) and a small and stable memory
footprint (< 1GiB) for all algorithms and con�gurations. (b) CELONIS3–4 show results
similar to the other process mining datasets.

Table 3.2: Characteristics of datasets.

Dataset Coll. Size Set Size Univ. Sizeavg. max.
BMS-POS4 3.2 · 105 9.3 164 1.7 · 103

FLICKR5 1.2 · 106 10.1 102 8.1 · 105

KOSARAK6 6.1 · 105 11.9 2.5 · 103 4.1 · 104

LIVEJ7 3.1 · 106 36.4 300 7.5 · 106

ORKUT7 2.7 · 106 119.7 4.0 · 104 8.7 · 106

SPOT8 4.4 · 105 12.8 1.2 · 104 7.6 · 105

CELONIS1 8.2 · 106 20.3 91 1.2 · 104

CELONIS2 2.6 · 106 22.1 130 3.5 · 103

3 http://ssjoin.dbresearch.uni-salzburg.at/datasets.html

http://ssjoin.dbresearch.uni-salzburg.at/datasets.html

3.5 experimental evaluation 69

parameters The algorithms take two parameters: the neighborhood radius, ϵ ,
and the density, minPts. Typically, density-based clustering is sensitive to ϵ and quite
robust to minPts. In our experiments, we vary both parameters: ϵ ∈ {2, 3, 4, 5} and
minPts ∈ {2, 4, 8, 16, 32, 64, 128} (defaults in bold font).

environment All experiments have been conducted on a 64-bit machine with 2
physical Intel Xeon E5-2630 v3 CPUs, 2.40GHz, 8 cores each (i.e., 16 logical processors,
hyper-threading disabled). The cores share a 20MiB L3 cache and have another 256KiB
of independent L2 cache. The system has 96GiB of RAM and runs Debian 10 Buster
(Linux 4.19.0-12-amd64 #1 SMP Debian 4.19.152-1 (2020-10-18)). Our code is compiled
with clang9 version 7, highest optimization level (-O3). The runtime is measured
with clock_gettime10 at process level, memory usage is the heap peak of Linux
memusage11 (using LD_PRELOAD). A single instance is executed at a time with no other
load on the machine.

3.5.1 Index & Cluster Statistics

We compare the number of candidates, true positives, and the number of clusters. The
numbers are sums over all region queries. Table 3.3 shows the results obtained for
BMS-POS, KOSARAK, and CELONIS1. We observe that Spread produces exactly the
same number of candidates as Join-Clust since both solutions use the asymmetric index.
Sym-Clust generates signi�cantly more candidates due to the symmetric pre�x index
and the symmetric distance computations. For CELONIS1, Spread and Join-Clust verify
about 5 times fewer candidates compared to Sym-Clust.

3.5.2 Runtime E�ciency

We measure the overall runtime, i.e., the CPU time that is required to cluster all sets
into DBSCAN clusters (excluding the time to load the data from disk). Figure 3.7 shows
the results for varying ϵ (minPts = 16). We observe that Sym-Clust is not competitive
in terms of overall runtime in most cases. For all datasets, except KOSARAK and SPOT,
the runtime of Sym-Clust increases much faster with ϵ than observed for Join-Clust and
Spread. This is mainly due to the use of the symmetric pre�x index (more candidates)
and redundant computations (symmetric pairs).

Our experiments reveal that Join-Clust su�ers from the following issues: (i) High
runtimes for LIVEJ, ORKUT, and SPOT due to the expensive neighborhood materializa-

4 BMS-POS: http://www.kdd.org/kdd-cup/view/kdd-cup-2000 [138]
5 FLICKR: Bouros et al. [23]
6 KOSARAK: http://fimi.uantwerpen.be/data/
7 LIVEJ, ORKUT: http://socialnetworks.mpi-sws.org/data-imc2007.html [84]
8 SPOT: Pichl et al. [94]
9 https://releases.llvm.org/7.0.0/tools/clang/docs/ReleaseNotes.html

10 https://man7.org/linux/man-pages/man2/clock_gettime.2.html
11 https://man7.org/linux/man-pages/man1/memusage.1.html

http://www.kdd.org/kdd-cup/view/kdd-cup-2000
http://fimi.uantwerpen.be/data/
http://socialnetworks.mpi-sws.org/data-imc2007.html
https://releases.llvm.org/7.0.0/tools/clang/docs/ReleaseNotes.html
https://man7.org/linux/man-pages/man2/clock_gettime.2.html
https://man7.org/linux/man-pages/man1/memusage.1.html

70 scaling density-based clustering to large collections of sets

Table 3.3: Index & cluster statistics for ϵ = 3, minPts = 16.
(a) BMS-POS.

Candidates True Positives Clusters
Sym-Clust 3.9 · 109 38.0 · 106 1
Join-Clust 640.0 · 106 38.0 · 106 1

Spread 640.0 · 106 38.0 · 106 1

(b) KOSARAK.
Candidates True Positives Clusters

Sym-Clust 40.7 · 109 2.8 · 109 5
Join-Clust 7.0 · 109 2.8 · 109 5

Spread 7.0 · 109 2.8 · 109 5

(c) CELONIS1.
Candidates True Positives Clusters

Sym-Clust 644.6 · 109 7.4 · 106 5,075
Join-Clust 131.5 · 109 7.4 · 106 5,075

Spread 131.5 · 109 7.4 · 106 5,075

tion. (ii) Join-Clust runs out of memory for many instances (missing points in plots), in
particular for FLICKR (any ϵ), KOSARAK (ϵ ≥ 4), LIVEJ, ORKUT, and SPOT (ϵ ≥ 3).

Spread outperforms its competitors in most settings and is competitive with Join-
Clust otherwise (cf. Figures 3.7a, 3.7g, and 3.7h). For CELONIS1 and CELONIS2, Spread
outperforms Sym-Clust by almost an order of magnitude and is competitive with
Join-Clust.

Figure 3.8 shows the runtime results for varying minPts values (ϵ = 3). We observe
that the runtime of all three solutions is quite robust to minPts. The insights are similar
for all datasets and values of ϵ . We include the plots for BMS-POS and KOSARAK.

3.5.3 Memory E�ciency

We study the memory usage of Join-Clust, Sym-Clust, and Spread. All three solutions
store (i) the collection, (ii) the inverted index, (iii) the candidates, and (iv) the result
of a region query on the heap. The symmetric pre�x index of Sym-Clust is larger
than the asymmetric index, but still linear in the collection size. Sym-Clust generates
more candidates than Join-Clust and Spread (cf. Section 3.5.1), which both use the
asymmetric pre�x index . Join-Clust materializes all neighborhoods in main memory.
Sym-Clust and Spread materialize only a single neighborhood at a time. Spread stores
also backlinks and the disjoint-set in main memory.

Figure 3.10 shows our results for varying ϵ (minPts = 16, y-axis log scale). Join-Clust
runs out of memory for many instances (cf. Section 3.5.2). The neighborhood material-
ization in Join-Clust can be memory intensive even for small values of ϵ . We observe
di�erent growth rates with increasing radius ϵ , which we attribute to the di�erent

3.5 experimental evaluation 71

2 3 4 50
100
200

ϵ

CP
U

tim
e

[s
]

(a) BMS-POS.
2 3 4 50

500

1,000

ϵ

CP
U

tim
e

[s
]

(b) FLICKR.
2 3 4 50

1,000

2,000

ϵ

CP
U

tim
e

[s
]

(c) KOSARAK.

2 3 4 50
1,000
2,000
3,000

ϵ

CP
U

tim
e

[s
]

(d) LIVEJ.
2 3 4 50

200
400
600

ϵ

CP
U

tim
e

[s
]

(e) ORKUT.
2 3 4 50

200
400

ϵ

CP
U

tim
e

[s
]

(f) SPOT.

2 3 4 50
20
40
60
80
·103

ϵ

CP
U

tim
e

[s
]

(g) CELONIS1.
2 3 4 50

5

10
·103

ϵ

CP
U

tim
e

[s
]

(h) CELONIS2.

Spread Join-Clust Sym-Clust

Figure 3.7: Runtime over ϵ , minPts = 16.

21 22 23 24 25 26 270
20
40
60
80

minPts

CP
U

tim
e

[s
]

(a) BMS-POS

21 22 23 24 25 26 270
200
400
600
800

minPts

CP
U

tim
e

[s
]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 3.8: Runtime over minPts, ϵ = 3.

×1 ×2 ×4 ×8 ×160
10
20
30
·103

dataset size

CP
U

tim
e

[s
]

(a) BMS-POS

×1 ×2 ×4 ×8 ×160
50

100
150
·103

dataset size

CP
U

tim
e

[s
]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 3.9: Runtime over data size, ϵ = 3, minPts = 16.

neighborhood sizes. The memory consumption of Sym-Clust is signi�cantly lower
and robust to varying ϵ . Spread shows a similar behavior. In some cases (e.g., LIVEJ,
ORKUT), Spread occupies even less memory than Sym-Clust. When few backlinks
are materialized, the smaller asymmetric pre�x index of Spread outweighs the storage
overhead for the backlinks.

72 scaling density-based clustering to large collections of sets

Figure 3.11 shows the memory usage over minPts (ϵ = 3, log-log scale). The memory
consumption of Sym-Clust and Join-Clust is stable w.r.t. increasing values of minPts,
while the memory usage of Spread slightly increases. This is due to the number
of concurrently stored backlinks: the larger minPts, the higher the chance that a
succeeding core neighbor is not yet classi�ed, which triggers the creation of a backlink
entry. The memory grows slowly with increasing minPts and does not limit the
scalability of Spread. We include the results for BMS-POS and KOSARAK, ϵ = 3; other
datasets and ϵ values show similar results.

2 3 4 50.01
0.1

1
10

100

ϵ

m
em

or
y

[G
iB

]

(a) BMS-POS.
2 3 4 50.1

1

ϵ

m
em

or
y

[G
iB

]

(b) FLICKR.
2 3 4 50.1

1
10

100

ϵ

m
em

or
y

[G
iB

]

(c) KOSARAK.

2 3 4 50.1
1

10
100

ϵ

m
em

or
y

[G
iB

]

(d) LIVEJ.
2 3 4 51

10

100

ϵ

m
em

or
y

[G
iB

]

(e) ORKUT.
2 3 4 50.01

0.1
1

10
100

ϵ
m

em
or

y
[G

iB
]

(f) SPOT.

2 3 4 51

10

ϵ

m
em

or
y

[G
iB

]

(g) CELONIS1.
2 3 4 50.1

1

10

ϵ

m
em

or
y

[G
iB

]

(h) CELONIS2.

Spread Join-Clust Sym-Clust

Figure 3.10: Main memory over ϵ , minPts = 16.

21 22 23 24 25 26 270.01
0.1

1
10

100

minPts

m
em

or
y

[G
iB

]

(a) BMS-POS

21 22 23 24 25 26 270.01
0.1

1
10

100

minPts

m
em

or
y

[G
iB

]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 3.11: Main memory over minPts, ϵ = 3.

backlinks peak We evaluate the e�ect of releasing the backlinks of a set in Spread
after the set has been processed (cf. line 34, Algorithm 13). Figures 3.13 and 3.14 show
the peak number of allocated backlinks relative to the maximum number of backlinks
for varying ϵ (minPts = 16) and minPts (ϵ = 3), respectively. Since two backlink
structures, core (green) and non-core (orange), are maintained for each set in R, at

3.5 experimental evaluation 73

×1 ×2 ×4 ×8 ×160.01
0.1

1
10

100

dataset size

m
em

or
y

[G
iB

]

(a) BMS-POS

×1 ×2 ×4 ×8 ×160.01
0.1

1
10

100

dataset size

m
em

or
y

[G
iB

]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 3.12: Main memory over data size, ϵ = 3, minPts = 16.

most 2 |R | backlinks can be allocated (light blue). Deallocating the backlinks of probed
sets is highly e�ective: Only a small fraction of the maximum number of backlinks is
allocated at any point in time. For increasing values of ϵ and minPts also the number
of allocated backlinks grows.

2 3 4 50
200
400
600
·103

ϵal
lo

c.
ba

ck
lin

ks

(a) BMS-POS.
2 3 4 50

0.5
1
·106

ϵal
lo

c.
ba

ck
lin

ks

(b) KOSARAK.

Core Non-core 100%

Figure 3.13: Backlinks peak over ϵ , minPts = 16.

21 22 23 24 25 26 270
200
400
600
·103

minPts

al
lo

c.
ba

ck
lin

ks

(a) BMS-POS.

21 22 23 24 25 26 270
0.5

1
·106

minPts

al
lo

c.
ba

ck
lin

ks

(b) KOSARAK.

Core Non-core 100%

Figure 3.14: Backlinks peak over minPts, ϵ = 3.

3.5.4 Scalability

We evaluate the scalability of Spread and its competitors to increasing data sizes. To this
end, we increase the size of BMS-POS and KOSARAK using the procedure of Vernica et
al. [118]. This approach does not a�ect the token universe, and the number of similar
pairs in the dataset increases linearly with the data size.

Figure 3.9 (runtime) and Figure 3.12 (main memory) report the results for our default
parameter setting. Spread shows runtimes similar to Join-Clust and outperforms Sym-
Clust by a factor of about 12 (BMS-POS) resp. 5.7 (KOSARAK) on the largest dataset

74 scaling density-based clustering to large collections of sets

(×16). As we increase BMS-POS by a factor of 16, the runtime increases by a factor of
195 for Spread, 204 for Join-Clust, and 460 for SymClust. The memory grows linearly
for all measured data points and increases by a factor of about 2 when we double the
data size. Join-Clust requires 18-25 (BMS-POS) resp. 499-569 (KOSARAK) times more
memory than its competitors and runs out of memory on KOSARAK except for the ×1
dataset. Summarizing, Spread clearly outperforms Sym-Clust in runtime (by a factor
of 5-12) and Join-Clust in memory usage (by more than an order of magnitude) as we
increase the data size.

3.6 related work

indexes for sets Most set similarity joins operate on an inverted list index that
maps signatures to candidate sets. Various signatures have been proposed [16, 29, 108,
123]. Pre�xes [29] in conjunction with the length �lter [6] have been shown to prune
sets e�ectively. More sophisticated �lters include positional and su�x �lter [130], the
removal �lter [98], the position-enhanced length �lter [80], and the adaptive pre�x
�lter [122]. Wang et al. [124] leverage the similarity of the sets in an ϵ-neighborhood
to reduce the overall number of false positives. Dong et al. [36] propose a size-aware
algorithm that runs in o(n2)+O(k) time fork result pairs. Qin and Xiao [96] propose the
pigeonring, a generalization of the pigeonhole principle that yields stronger constraints.
Indexing and join techniques for sets have been studied extensively in the single-
machine [81] and the distributed context [45].

Most of these approaches focus on self-joins, which order the sets and compute the
lookahead neighborhood to avoid symmetric distance computations. In our work, we
use the pre�x �lter, but any of the other asymmetric indexes is applicable.

efficient region qeries Ester et al. [40] propose the �rst exact DBSCAN
algorithm with O (n logn) runtime for vectors of arbitrary dimension. O (n logn)
runtime holds for a small number of neighbors (compared to n) and an index with
O (logn) lookup time. Henceforth, e�cient region query computation has been of
great interest and many improvements have been proposed. Brecheisen et al. [25] use
minPts-nearest neighbor queries to identify core points and postpone the other distance
computations until the distances are required to get a correct DBSCAN clustering. The
proposed Xseedlist data structure is designed for expensive distance functions and
assumes a cheap but selective �lter. These assumptions do not hold for sets: The
veri�cation (i.e., distance computation) of candidate pairs has shown to be highly
e�cient [81] (a small number of integer comparisons). Brecheisen et al. must insert the
candidates into the Xseedlist data structure, which maintains sorted lists of candidates.
Due to the expensive sorting procedure, we do not expect Xseedlist to improve the
DBSCAN algorithm for sets. TI-DBSCAN [71] exploits the triangle inequality to reduce
the search space of region queries. The solution is not index-based, sorts the points
w.r.t. a reference point, and shifts a window of size 2ϵ over the sorted points. The
reference point is the point with minimal values in all dimensions. This is equivalent
to the empty set, and our processing order in combination with the pre�x index for

3.7 conclusion 75

sets subsumes this technique. Patwary et al. [90] introduce PARDICLE, a parallel
approximate density-based clustering algorithm for Euclidean space. Its aim is to
reduce the neighborhood computation time by sampling high-density regions. Kumar
and Reddy [72] propose a new graph-based index structure called Groups. It discovers
groups of patterns in two scans over the dataset and applies a standard DBSCAN
afterwards. Groups accelerates region queries by pruning noise points e�ectively.
This technique assumes Euclidean distance and does not consider Hamming distance
or other set similarity measures. Recently, Jiang et al. [64] proposed SNG-DBSCAN,
which prevents the computation of the full ϵ-neighborhood graph via subsampling its
edges. This results in O (

sn2)-time complexity with s being the sampling rate. Under
certain distribution assumptions, SNG-DBSCAN has been shown to preserve the exact
ϵ-neighborhood graph for s ≈ (logn) /n with O (n logn) runtime.

dbscan techniqes. Yang et al. [132] propose the distributed DBSCAN-MS
clustering algorithm for metric spaces. DBSCAN-MS uses pivots to map the data from
metric space to vector space, where it is partitioned in order to be distributed. A local
DBSCAN is then executed on each partition. Our solution does not rely on the metric
properties of set distances, but uses specialized set indexes. However, our techniques
may be leveraged in the context of DBSCAN-MS, where the data points are ordered by
one of the dimensions for e�cient neighborhood queries.

Patwary et al. [89] propose PDSDBSCAN, a parallel DBSCAN algorithm that uses
the disjoint-set data structure to connect data points into clusters. We only insert links
between subclusters into the disjoint-sets structure, while PDSDBSCAN inserts a link
for each neighbor, rendering the number of required union operations a bottleneck for
this approach.

Böhm et al. [20] use a block-nested loop join and bu�er the join result to reduce the
number of block accesses required to compute ϵ-neighborhoods. CUDA-DClust [21] is
a GPU-based solution that splits clusters into chains that are expanded from di�erent
starting points in parallel. In order to merge chains into clusters, a quadratic-size bit
matrix is used. We maintain only a linear number of links and leverage disjoint-sets to
merge clusters. Incremental DBSCAN algorithms [41] deal with updates on an existing
clustering. Similar to our approach, these techniques may need to merge clusters
when new points are inserted. None of the above solutions supports asymmetric
neighborhood indexes.

Numerous parallel and distributed algorithms [32, 34, 50, 53–55, 63, 99, 104, 126, 131]
as well as approximations [48, 79, 120, 128] have been proposed. We present an exact,
single-core solution for sets.

3.7 conclusion

In this chapter, we have investigated clustering techniques for large collections of sets.
Our work was motivated by an application in process mining that models processes
as sets to assess their similarity. We have shown that the solutions that are currently
available, Sym-Clust and Join-Clust, are not satisfying: Sym-Clust is slow since it

76 scaling density-based clustering to large collections of sets

cannot use e�ective asymmetric set indexes, while Join-Clust is infeasible for many
settings due to its excessive memory usage. We introduced a novel, density-based
clustering algorithm, Spread, that can process data points in any user-de�ned order
and is therefore �t for the use with asymmetric indexes. Spread combines the best of
both worlds: It uses the e�ective asymmetric index of Join-Clust, but like Sym-Clust
does not need to materialize the neighborhoods. We introduced so-called backlinks to
guarantee a correct DBSCAN clustering and showed the correctness of our approach.
To the best of our knowledge, Spread is the �rst DBSCAN-compliant algorithm that
uses an asymmetric index and runs in linear space.

Spread uses the index as a black box and works with any data type. Interesting future
work includes evaluating the performance of Spread for vector data, where candidates
are generated using a sliding window that is shifted along one dimension. The data
points in the window are candidates, i.e., the window simulates an asymmetric index
for Spread.

acknowledgments We thank Alexander Miller, Mateusz Pawlik, Thomas Hütter,
Manuel Widmoser, Manuel Kocher, Daniel Ulrich Schmitt, Konstantin Thiel, Daniel Grittner,
Christian Böhm, and Claudia Plant for valuable discussions, and Manuel Kocher for typesetting
Figures 3.1 and 3.3. This work was partially supported by the Austrian Science Fund (FWF): P
29859.

4
A M U L T I - C O R E S O L U T I O N F O R D E N S I T Y- B A S E D C L U S T E R I N G
O F S E T S

The Spread algorithm (cf. Chapter 3) is designed for single-threaded execution. In
practice, however, parallel algorithms are desirable to exploit the full potential of
modern multi-core processors. Therefore, we introduce MC-Spread, an extension of
Spread to multi-core environments.

We summarize the contributions of this chapter as follows.

• We propose MC-Spread, a multi-core extension for the sequential Spread algo-
rithm. For a total number of k + 1 threads, MC-Spread splits the threads into k

threads that compute (distinct) lookahead neighbors and one thread that builds
the clusters. Each neighborhood thread stores its neighborhoods into a shared
array and noti�es the clustering thread about the availability of the respective
neighborhood. The clustering thread processes (and frees) the lookahead neigh-
borhoods concurrently in a similar manner to Spread, i.e., using disjoint-set data
structure and backlinks (cf. Chapter 3).

• The neighborhood threads may �ll up the memory if they allocate neighborhoods
much faster than the clustering thread frees them. To prevent this, we propose
a memory constraint that bounds the memory the neighborhood threads are
allowed to occupy.

• We empirically evaluate MC-Spread against MC-Join-Clust, a multi-core exten-
sion of the materialization-based solution Join-Clust (cf. Chapter 3). We observe
that MC-Spread scales better with the number of cores in terms of runtime.
Furthermore, we discuss characteristics of datasets and con�gurations that a�ect
the scalability of both approaches. Furthermore, we discuss experimental results
of the memory-constrained version of MC-Spread.

The remainder of this chapter is organized as follows. In Section 4.1, we cover some
preliminaries on multi-core processors and concurrency. Section 4.2 presents Simple-
MC-Spread, a simple multi-core extension of the Spread algorithm. In Section 4.3,
we discuss some e�ects that limit the scalability of Simple-MC-Spread and propose
re�nements to mitigate them. Our multi-threaded implementations of Spread and
Join-Clust are presented in Section 4.4 (MC-Spread) and Section 4.5 (MC-Join-Clust),
respectively. In Section 4.6, we evaluate the multi-threaded solutions MC-Spread and
MC-Join-Clust against each other with respect to runtime, memory consumption, and
caching. We conclude this chapter with an outlook to future work in Section 4.7.

77

78 a multi-core solution for density-based clustering of sets

4.1 preliminaries

Before we discuss our multi-core extension, we give a brief introduction to multi-core
processors and discuss some phenomena that a�ect the performance of concurrent
code and will be relevant for the discussion later in this chapter (e.g., false sharing).

multi-core processor basics A multiprocessor system is a system with several
processors (CPUs). Typically, each processor has its own memory and resides on a
separate chip. In a multi-core processor, multiple processors (often referred to as cores)
are physically located on the same chip with shared memory [101]. The memory
hierarchy of modern multi-core systems consists of multiple levels (with the fastest
memory type on top). We consider a simpli�ed memory hierarchy that covers the
basic memory types: multi-level caches (L1, L2, and L3 cache) and main memory [62].
Main memory is always shared across all cores over all processors and provides the
largest storage. Caches are physically closer to the cores (and thus faster) but have
lower storage capacities [62]. The L1 and L2 caches are the fastest cache levels (in this
order) and each core often has an isolated, private L1 and L2 cache. Contrarily, the
L3 cache is typically larger but shared across all cores. The main purpose of caches is
to speed up the access to a particular memory location by reducing the latency [101].
Without caches, an access to a memory location has to be served by main memory
(which has a high latency because it is physically far away from the CPU). When a
memory location is accessed, the CPU checks the �rst level of the memory hierarchy
(i.e., the L1 cache, in our model). If the �rst level does not contain the data, the CPU
checks the next level (i.e., the L2 cache). In the worst case, the CPU has to load the
data from main memory. In this case, all cache levels (L1, L2, and L3) are updated such
that the next memory access is hopefully served from one of the caches (ideally the
L1 cache) [62]. Di�erent locality principles (also referred to as locality of reference)
are used to maintain the content of a cache such that it favors low latency [62]. Two
popular locality principles are spatial and temporal locality. Spatial locality is based on
the observation that an access to a particular memory location is often followed by
an access to nearby memory locations. In contrast, temporal locality refers to the fact
that the same memory location is often accessed repeatedly [62]. A cache is typically
organized in so-called cache lines, which are blocks of �xed size (e.g., 64 bytes). A cache
line is the smallest data unit that is loaded from memory into cache, i.e., not only a
single memory location is loaded but also nearby locations such that they �ll the cache
line [62].

The cache hierarchy stores redundant copies of the data. In the case of a non-shared
cache, e.g., L1 or L2, a cache line may be invalidated by another core that updates the
data in its private cache. Consequently, cache coherence protocols have been developed
to keep the cache lines coherent [62]. For example, many processors implement a cache
coherence protocol that is based on invalidation, i.e., if one core modi�es a cache line,
then the corresponding cache lines of other cores are invalidated (“dirty”) and must be
updated before the next access [7, 107]. Keeping the cache coherent does not come for
free and incurs overhead.

4.1 preliminaries 79

Finally, common terms in the context of caches are cache hit and cache miss. A cache
hit occurs if the data required by an instruction is present in the cache, otherwise
the data must be loaded from memory (called cache miss) [62]. An invalidation-based
cache coherence protocol may also cause cache misses if the required memory location
is in the cache, but the cached copy is invalid. The performance of a multi-threaded
application often depends on the ratio of cache hits and misses [127].

effects in concurrent code Concurrent code adds complexity compared to
its sequential counterpart, and a number of side e�ects that impact the performance
may occur. Ideally, concurrent code runs x times faster than its sequential counterpart
if it is executed on x cores instead of only a single one (linear scalability) [127]. In
practice, however, concurrent code often does not scale linearly due to several e�ects.
In the worst case, the performance of concurrent code may even degrade compared to
its sequential counterpart. In the following, we cover some basic e�ects that degrade
the performance of concurrent code in practice [127]. We assume a multi-core processor
system with one thread being executed on a dedicated core.

We already mentioned the cache coherence problem. The fact that caches have to
be kept coherent also a�ects the performance of a multi-threaded execution if the
data is subject to modi�cations. In the case of read-only accesses to the data, the data
copies in the cache lines are coherent by de�nition. But if one thread modi�es the
data that is held in the cache, the cache coherence protocol triggers an update for the
caches of the other cores. In other words, the other cores have to wait until the cache is
updated [127]. Recurring, mutual updates of the cache lines is often referred to as cache
ping-pong and may impact the performance of concurrent code signi�cantly when the
number of threads increases [127].

Another phenomenon related to caches is false sharing, which is caused by the fact
that caches load data at the granularity of cache lines and cache coherence protocols
also work at that granularity [127]. Assume that two threads T1 and T2 access two
di�erent memory locations x1 resp. x2 that are physically close in main memory such
that they reside on the same cache line. If T1 updates x1 before T2 tries to read x2, the
cache line of T2 is invalidated and must be updated. The two threads do not share data,
but the caches falsely share the cache lines, which is one possible reason for cache
ping-pong [127].

Finally, we brie�y discuss contention on data due to atomic operations. In sequen-
tial code, the instructions are mostly executed in order (except for, e.g., instruction
reordering done by the compiler or the CPU) [127]. In a multi-threaded application,
the instructions of an operation of thread T1 may interleave with the instructions of
an operation of thread T2 (due to the scheduling algorithm of the operating system).
As a result, a shared memory location may be subject to a race condition [127]: Two
(or more) threads try to update the data of a shared memory location at the same
time. Atomic operations are one mechanism to avoid unde�ned behavior due to race
conditions. An atomic operation is a single, indivisible operation, which often reads
and writes a value simultaneously (commonly referred to as read-modify-write) [127].
For example, incrementing a variable x can be done atomically. If a shared counter

80 a multi-core solution for density-based clustering of sets

is incremented atomically by two threads, T1 and T2, then T2 may have to wait until
T1 successfully executed the read-modify-write operation (because T2 must read the
updated counter value). If many threads wait for each other, then the contention is
high and the application may progress slowly [127].

4.2 a simple multi-core extension of spread1

The Spread clustering algorithm (cf. Chapter 3) is designed for single-core execution.
All line numbers referenced in this section refer to Algorithm 13 in Section 3.4.3.
We sketch an extension to multi-core processors that requires little synchronization
between threads. Our extension is based on the observation that Spread spends most
of the runtime in neighborhood computations (lines 6-11; cf. Algorithm 13). While
for some datasets the neighborhood computation accounts for only about half of the
overall runtime (e.g., 55% for ORKUT, ϵ = 3), for the con�guration with the highest
runtime in our experiments (CELONIS1, ϵ = 5), Spread spends over 99% of the runtime
in computing the neighborhoods.

We distribute the workload to k + 1 threads, T1,T2, . . . ,Tk+1. Threads T1-Tk are
responsible for the neighborhood computations (lines 6-11; cf. Algorithm 13), Tk+1
performs the actual clustering (lines 12-34; cf. Algorithm 13). The runtime of the other
steps in Algorithm 13 (cf. Section 3.4.3) is negligible.

Neighborhood Computation. Let ri ∈ R, 1 ≤ i ≤ |R | be the i-th set of R in processing
order. Thread Tj , 1 ≤ j ≤ k , computes the neighborhoods N �ϵ (ri) of all ri with j = i

mod k (i.e., round robin). Each thread processes the assigned sets ri in processing
order (i.e., increasing values of i). The neighborhood computation in Algorithm 13
is interleaved with updating the density counters of ri and its neighbors. Only this
step requires synchronization (e.g., using atomic writes) since multiple threads may
access the same counter concurrently. We do not expect congestions since the density
updates are distributed over all neighbors.

Cluster Scan. Thread Tk+1 scans the sets in processing order and performs the steps
in lines 12-34 (maintain backlinks and disjoint-set, assign preliminary cluster IDs; cf.
Algorithm 13). After processing a set ri , the memory for the neighbors of ri is released.

Synchronization. We need to make sure that Tk+1 processes set ri only after ri ’s
neighbors have been computed. This can be achieved with a lock (implemented as
condition variable2) on ri that is held by Tj , j ≤ k , until the neighborhood of ri is
computed. Tk+1 needs to get the lock on ri before processing it.
Memory. Tk+1 releases the neighbors after processing them. If the parallel neigh-

borhood computation is faster than Tk+1, the precomputed neighborhoods will �ll
up the memory. This is avoided with a shared counter that is incremented by T1-Tk
(when they process a new set ri) and is decremented by Tk+1 (after processing ri). The
neighborhood computation of ri is postponed until the counter is below some threshold
that bounds the number of concurrently materialized lookahead neighborhoods.

1 The concept described in this section was published in Kocher et al. [70] (EDBT 2021).
2 A queue of threads waiting for a condition to become true.

4.3 refining the simple algorithm 81

4.3 refining the simple algorithm

We call the multi-core extension of Spread discussed in Section 4.2 the Simple-MC-
Spread algorithm. Simple-MC-Spread assumes a total number of k + 1 threads and
splits them into two types of threads: (i) Neighborhood threads with the primary task of
computing the lookahead neighborhood N �ϵ (r) for a particular probing set r (lines 6-
11; cf. Algorithm 13). Moreover, a neighborhood thread updates the density counters
atomically once the respective lookahead neighbors are known. (ii) A clustering thread
with the primary task of assigning the cluster identi�ers (lines 12-34; cf. Algorithm 13).
This includes the (non-concurrent) maintenance of the disjoint-set data structure and
the backlinks, and assigning the �nal cluster IDs. Based on our observation that the
neighborhood computation consumes most of the runtime for some con�gurations (e.g.,
over 99% for CELONIS1 and ϵ = 5), Simple-MC-Spread spawns k neighborhood threads,
T1-Tk , and a single clustering thread, Tk+1. The sets are assigned in a round-robin
fashion. Simple-MC-Spread was implemented in C++ (2017 standard). Subsequently,
we discuss pitfalls of the Simple-MC-Spread algorithm and propose solutions.

4.3.1 Idle Clustering Thread

We observe that the neighborhood threads may be too slow. Simple-MC-Spread assigns
each neighborhood threadT1-Tk a �xed number of sets in a round-robin fashion. We pre-
allocate a shared array of size |R | that stores the lookahead neighborhoods and maintain
a condition variable cvi for each array entry 1 ≤ i ≤ |R |. After computing the lookahead
neighbors of a probing set ri , the associated thread (i) increments the density counters,
(ii) moves the lookahead neighbors to the neighborhoods array, and (iii) unlocks cvi
of the corresponding entry in the array and noti�es the clustering thread. However,
for some con�gurations and datasets (e.g., high ϵ values; CELONIS1 and CELONIS2),
we observe that the clustering thread has to wait for the neighborhood threads to
unlock the lookahead neighborhoods. We attribute this to the expensive neighborhood
computation in case of the CELONIS datasets (i.e., the neighborhoods are small but an
excessive number of candidates must be veri�ed, cf. Table 3.3). Therefore, we adapt the
clustering thread such that it helps with the neighborhood computation if required.
This prevents the clustering thread from idling while waiting for a neighborhood thread
to notify it. To this end, we introduce a shared counter, next_id , that represents the
ID of the next set to be probed against the index. Each thread atomically fetches and
decrements next_id to get the next ID it has to probe (instead of assigning the IDs in a
round robin fashion). When the clustering thread is supposed to cluster a particular
set ri , it (atomically) checks if the corresponding neighborhood is available. If it is
available, then ri is clustered. Otherwise, the clustering thread helps computing the
neighborhoods, i.e., it atomically fetches and decrements next_id , and computes the
corresponding lookahead neighborhood (in the manner of a neighborhood thread).
This is done until the neighborhood of ri is available. We expect this approach to
prevent the idle clustering thread and provide better load balancing (as the cost of a
neighborhood computation is unknown). We did not observe contention on next_id .

82 a multi-core solution for density-based clustering of sets

4.3.2 Cache Misses and False Sharing

We observe that incrementing the shared density counters in the neighborhood threads
may not be cache-friendly. Simple-MC-Spread increments the shared density counters
in the neighborhood threads. We observe that this is problematic for con�gurations
with large neighborhoods, e.g., the con�gurations for which Join-Clust runs out of
memory in Section 3.5 (with the FLICKR dataset being the most extreme case). Many
of these datasets contain a large portion of small sets that all are pairwise neighbors.
For example, any two sets of size 2 are similar under a Hamming distance of ϵ = 4.
For datasets like KOSARAK and FLICKR, we observe that Simple-MC-Spread does not
scale well with the number of cores. In the case of the FLICKR dataset, the performance
even degrades compared to our single-threaded implementation of Spread. After
pro�ling the executions with Linux perf3 tools, we observe that the number of CPU
cycles grows with the number of threads, whereas the number of instructions is
constant. Figures 4.1 and 4.2 show the wallclock time and the number of CPU cycles
for CELONIS1, KOSARAK, and FLICKR4 (ϵ = 3; Simple-MC-Spread and MC-Join-Clust,
cf. Section 4.5), respectively. In Figure 4.1, the dashed lines show the respective single-
threaded runtimes if scaled linearly with the number of cores, i.e., the single-threaded
runtime is divided by the number of cores. For the FLICKR dataset, the number of CPU
cycles for 16 cores is almost 30 times higher compared to the single-threaded execution,
although both algorithms execute about 1.6 · 1012 instructions.

12 4 8 160
500

1,000
1,500
2,000

number of cores

ru
nt

im
e

[s
]

(a) CELONIS1

12 4 8 160
100
200

number of cores

ru
nt

im
e

[s
]

(b) KOSARAK

12 4 8 160
100
200
300
400

number of cores

ru
nt

im
e

[s
]

(c) FLICKR

Simple-MC-Spread Optimal MC-Join-Clust Optimal

Figure 4.1: Wallclock time for CELONIS1, KOSARAK, and FLICKR, ϵ = 3, minPts = 16.

12 4 8 160
5

10
15
·1012

number of cores

cy
cl

es
[#

]

(a) CELONIS1

12 4 8 160
1
2
3
4

·1012

number of cores

cy
cl

es
[#

]

(b) KOSARAK

12 4 8 160
5

10
15
·1012

number of cores

cy
cl

es
[#

]

(c) FLICKR

Simple-MC-Spread MC-Join-Clust

Figure 4.2: CPU cycles for CELONIS1, KOSARAK, and FLICKR, ϵ = 3, minPts = 16.

3 https://man7.org/linux/man-pages/man1/perf.1.html
4 Note that MC-Join-Clust runs out of memory for ϵ = 3, thus no data points are included for FLICKR.

https://man7.org/linux/man-pages/man1/perf.1.html

4.3 refining the simple algorithm 83

12 4 8 160
20
40
60
80
·109

number of cores

m
iss

es
[#

]

(a) CELONIS1

12 4 8 160
1
2
3
4
·109

number of cores

m
iss

es
[#

]

(b) KOSARAK

12 4 8 160

2

4
·109

number of cores

m
iss

es
[#

]

(c) FLICKR

Simple-MC-Spread MC-Join-Clust

Figure 4.3: Cache misses for CELONIS1, KOSARAK, and FLICKR, ϵ = 3, minPts = 16.

Further pro�ling revealed that also the number of cache misses grows rapidly, cf.
Figure 4.3. In the case of CELONIS1, a similar e�ect can be observed for the multi-core
implementation of Join-Clust, MC-Join-Clust (cf. Section 4.5). However, we note that
the CPU cycles and cache misses of MC-Join-Clust increase at a much lower rate (i.e.,
about 3 times more CPU cycles for 16 cores compared to the single-threaded execution).
For Simple-MC-Spread, we conclude that there are two reasons for this e�ect: (i)
Contention on the atomic density counters (many di�erent threads may access the
same counters concurrently). This was con�rmed by a test in which we remove the
atomicity from the density counters. Despite reporting incorrect results, we observe
a much lower CPU cycle growth rate and better performance. (ii) False sharing of
the density counters. Di�erent threads updating the counters may lead to alternating
invalidation of the cache lines (one counter occupies 4 bytes, and a typical cache line
size is about 64 bytes). To mitigate these e�ects, we move the update procedure of the
density counters into the clustering thread. Although this change increases the load
on the sequential part of Simple-MC-Spread, the additional load is low and leads to
better CPU utilization and runtime. Improving over this adaptation may be subject to
further investigations.

4.3.3 Controlling the Memory

Apart from these adaptations, we note that the reported results are without a mechanism
to bound the number of lookahead neighborhoods that are materialized simultaneously
in main memory (as described at the end of Section 4.2). In our experiments, we observe
that this results in running out of memory for some con�gurations (cf. Section 4.6).
Thus, we also test a memory-constrained version of MC-Spread, which maintains an
atomic counter, alloc_mem, that represents the allocated memory. We approximate
the memory consumption by summing up the allocated memory for the lookahead
neighborhoods (including some overhead). The memory constraint, mem_bound , is
given as command-line argument and represents the amount of memory (in GiB) that
the algorithm is allowed to occupy.

Initially, alloc_mem is set to zero. Before computing a lookahead neighborhood,
a neighborhood thread (atomically) checks if the memory constraint is satis�ed, i.e.,
if alloc_mem ≤ mem_bound . If this is not the case, the neighborhood thread spins
until the constraint is satis�ed. For each computed lookahead neighborhood, the

84 a multi-core solution for density-based clustering of sets

corresponding thread (atomically) increases alloc_mem by the memory that is allocated
for the corresponding neighborhood. After processing a lookahead neighborhood, the
clustering thread decreases alloc_mem by the space that is freed. Although we only
approximate the allocated memory, this mechanism e�ectively bounds the memory
that is occupied by the neighborhoods. Consequently, we are able to execute all
con�gurations in our experiments if the memory constraint is enabled (cf. Section 4.6).

4.4 multi-core spread

Previous sections already describe the principal approach for Spread’s multi-core
extension, denoted MC-Spread. In this section, we implement MC-Spread without
memory constraint (to simplify the discussion). Before we give the corresponding
pseudocode, we recap the most important data structures.

Given k + 1 threads, we spawn k neighborhood threads,T1-Tk , and a single clustering
thread Tk+1. The following structures are shared between all threads: The read-only
inverted index I , a lookahead neighborhood array, ln, of size |R | (where ln[i] stores
the lookahead neighbor of the i-th set, ri), and a shared atomic counter, next_id , that
represents the ID of the next set to be probed (i.e., compute the lookahead neighbors).
We initialize next_id to |R | (the ID of the �rst set in our processing order), and use the
operation next_id .fetch_decr() to read and decrement next_id atomically. Furthermore,
each set r is associated with a condition variable r .cv , which locks the corresponding
entry in the neighborhood array.

For the condition variable r .cv we assume the following operations: r .cv .wait()
causes a thread to wait for the lookahead neighborhood of r , r .cv .notify() noti�es all
threads that wait for the neighborhood of r , and r .cv .would_wait() returns true if the
call to r .cv .wait() would result in waiting (false otherwise). Note that if r .cv .notify()
is called before r .cv .wait(), then the calling thread does not have to wait. r .cv .init()
initializes r .cv such that the corresponding entry in the neighborhoods array is locked.
We refer to Williams [127] for a discussion on the use of condition variables in C++.

Algorithm 14: MC-Spread(R, ϵ , minPts)
Input: Collection of sets R, distance threshold ϵ , min. density minPts
Result: A correct DBSCAN clustering of R w.r.t. ϵ , minPts
// shared structures between all threads

1 I ← Create-Index (R, ϵ); // read-only inverted index

2 ln ← new associative array of size |R |; // lookahead neighborhood array

3 next_id ← new atomic counter with value |R |; // 1-based indexing

4 foreach r ∈ R do
5 r .dens ← 1; r .cid ← −∞; r .cv .init();
6 do concurrently using k threads // assuming k + 1 hardware threads in total

7 Compute-Neighborhoods(R, ϵ , I , ln,next_id);
8 MC-Cluster(R, ϵ ,minPts , I , ln,next_id); // the main thread clusters concurrently

Algorithm 14 gives the pseudocode of MC-Spread’s main procedure. A neighborhood
thread (i) reads and decrements next_id atomically and (ii) probes the next set (the read

4.4 multi-core spread 85

Algorithm 15: Compute-Neighborhoods(R, ϵ , I , ln,next_id)
Input: Collection of sets R, distance threshold ϵ , inverted index I ,

neighborhood array ln, atomic counter next_id
Result: The neighborhoods computed by this neighborhood thread

1 id ← next_id .fetch_decr(); // fetch ID of next set to probe

2 while id > 0 do
3 Probe-Notify(R, ϵ , I , ln, id); // probe set with ID id and notify clustering thread

4 id ← next_id .fetch_decr(); // fetch ID of next set to probe

Algorithm 16: Probe-Notify(R, ϵ , I , ln, id)
Input: Collection of sets R, distance threshold ϵ , inverted index I ,

neighborhood array ln, probing ID id
Result: Lookahead neighbors of set with ID id

1 r ← set with ID id ; // get set to probing ID

2 r .cv .lock(); // lock corresponding entry in neighborhoods array (if not locked yet)

3 M ← Probe (r , I , ϵ); // get candidates for r
4 foreach (s ,po) ∈ M do // po . . . prefix overlap

5 if Verify-Pair(r , s , ϵ ,po) then
6 ln[r] ← ln[r] ∪ {s}; // append lookahead neighbor to shared array

7 r .cv .notify(); // neighborhood of r is ready; unlock entry and notify clustering thread

Algorithm 17: MC-Cluster(R, ϵ ,minPts , I , ln,next_id)
Input: Collection of sets R, distance threshold ϵ , min. density minPts, inverted index I ,

neighborhood array ln, atomic counter next_id
Result: A correct DBSCAN clustering of R w.r.t. ϵ , minPts

1 ds ← new disjoint-set; nc_bl , c_bl ← new backlinks;
2 foreach r ∈ R do ds .make_set (r .id) ;
3 foreach r ∈ R in processing order do
4 while r .cv .would_wait() do // help with neighborhood computation

5 help_id ← next_id .fetch_decr(); // fetch ID of next set to probe

6 if help_id > 0 then Probe-Notify(R, ϵ , I , ln,help_id) ;
7 r .cv .wait(); // wait for the neighborhood to be ready

8 foreach s ∈ ln[r] do // update neighbor densities

9 r .dens ← r .dens + 1; s .dens ← s .dens + 1;
10 Cluster(r , minPts, ln, ds , nc_bl , c_bl); // clustering procedure like in Spread

11 release ln[r]; // release neighborhood; not needed anymore

12 foreach r ∈ R do // final assignment of cluster IDs

13 if r .cid , −∞ then r .cid ← ds .�nd_set (r .cid);

value of next_id is the corresponding set ID) against the inverted index to retrieve its
lookahead neighbors. The two steps are executed whilenext_id > 0 holds (i.e., there are
still sets to be probed). Algorithm 15 shows the pseudocode of a neighborhood thread
(Algorithm 16 is an auxiliary function). We reuse Algorithms 10–12 (cf. Section 3.3.2).

The clustering thread maintains the disjoint-set data structure as well as the backlinks.
It iterates over all sets r ∈ R in processing order and performs the following steps for

86 a multi-core solution for density-based clustering of sets

Algorithm 18: Cluster(r , minPts, ln,ds ,nc_bl , c_bl)
Input: Current set r , min. density minPts, neighborhood array ln, disjoint-set ds ,

non-core backlinks nc_bl , core backlinks c_bl
Result: Subcluster assignments of r and its lookahead neighbors
// Cf. also lines 12-34 in Algorithm 13

1 if r .dens ≥ minPts then // r is core

2 if r .cid = −∞ then r .cid ← r .id ;
3 foreach x ∈ nc_bl[r] do // claim border sets x ≺ r
4 if x .cid = −∞ then x .cid ← r .cid ;
5 foreach s ∈ N �ϵ (r) do // s � r
6 if s .cid = −∞ then // claim unclaimed s � r
7 s .cid ← r .cid
8 else if r .cid , s .cid then // s already claimed

9 if s .dens ≥ minPts then // s is core

10 ds .union (r .cid , s .cid) // link subclusters

11 else // remember core neighbor r
12 c_bl[s] ← c_bl[s] ∪ {r .cid}

13 foreach x ∈ c_bl[r] do ds .union (r .cid ,x);
14 else // r is not core, i.e., r .dens < minPts

15 if r .cid = −∞ then // claim potential border set r
16 foreach s ∈ N �ϵ (r) do
17 if s .dens ≥ minPts then // s is core

18 if s .cid = −∞ then s .cid ← s .id ;
19 r .cid ← s .cid ; break;

20 if r .cid = −∞ then // remember potential border set r
21 foreach s ∈ N �ϵ (r) do nc_bl[s] ← nc_bl[s] ∪ {r } ;

22 release c_bl[r] and nc_bl[r] // not needed anymore

each single probing set r : (i) It atomically checks if the neighborhood of the current set
r is available. If not, then the clustering thread also computes neighborhoods until it
becomes available. (ii) The clustering thread tries to acquire a lock on the condition
variable r .cv . This is the synchronization point between clustering thread and the
neighborhood threads. (iii) The clustering thread iterates over the lookahead neighbors
of r and increments the density counters accordingly. (iv) The clustering thread clusters
the current set r and releases the corresponding lookahead neighbhorhood. (v) Finally,
the clustering thread assigns the �nal cluster IDs once all sets have been processed.
Algorithm 17 presents the pseudocode of the clustering thread (Algorithm 18 is an
auxiliary function).
Remarks & Details. We use the standard C++ library to implement MC-Spread.

Atomic counters are implemented using std::atomic5. Its fetch_sub function is used
to read and decrement a counter atomically. Each condition variable is implemented

5 https://en.cppreference.com/w/cpp/atomic/atomic

https://en.cppreference.com/w/cpp/atomic/atomic

4.5 multi-core join-clust 87

as a triple of std::condition_variable6, std::mutex7, and a boolean �eld. The
boolean �eld is used in the call to wait() to prevent spurious and lost wakeups of
threads (cf. std::condition_variable::wait8) [127]. Recall that each entry in the
shared lookahead neighborhood array ln has a separate condition variable triple. The k
neighborhood threads and the clustering thread are executed concurrently. We spawn
k neighborhood threads (using std::thread9) and the main thread continues with
the clustering procedure. The condition variables ensure that the clustering thread
processes only neighborhoods that are available.

4.5 multi-core join-clust

The parallelization of the join-based baseline solution, Join-Clust, operates in two
decoupled phases: (1) The join and neighborhood materialization and (2) the clustering
(DBSCAN). In phase (1), we focus on the parallelization of the set similarity join and,
in particular, the probing procedure since the build time of the pre�x-based inverted
index is negligible. The multi-core version of Join-Clust, MC-Join-Clust, spawns only
neighborhood threads (k + 1 in total) and uses a sequential DBSCAN10 (due to the low
runtime once the neighborhoods are known). Each neighborhood thread Ti maintains
an individual array of result pairs, pairsi , which together yield the overall join result,
pairs =

⋃k+1
i=1 pairsi . Since the complete ϵ-neighborhoods are materialized, we skip

the merging and directly populate the neighborhoods. This is done in a sequential
loop over the thread-local join results, which serves as synchronization point before
the (sequential) DBSCAN algorithm is executed. The inverted index, I , is a shared,
read-only data structure. Initially, the range of probing IDs is split into k + 1 subranges,
each of which is assigned to a separate neighborhood thread. Work stealing between
the neighborhood threads is used to achieve good load balancing, i.e., a subrange
is further divided (and distributed) in case of an idle thread. Algorithm 19 depicts
the pseudocode of the parallelized neighborhood materialization (Algorithm 20 is an
auxiliary function). Again, we reuse Algorithms 10–12 (cf. Section 3.3.2).

Remarks & Details. We use Intel’s Threading Building Blocks11 (TBB) library to split
the collection of sets R and to parallelize the probing using tbb::parallel_for12.
Automatic splitting into subranges and work stealing between threads [121] is im-
plemented using tbb::blocked_range13 combined with tbb::auto_partitioner14.

6 https://en.cppreference.com/w/cpp/thread/condition_variable
7 https://en.cppreference.com/w/cpp/thread/mutex
8 https://en.cppreference.com/w/cpp/thread/condition_variable/wait
9 https://en.cppreference.com/w/cpp/thread/thread

10 Parallelization of the DBSCAN algorithm is subject to active research [104, 126], but is not the focus of
this chapter.

11 https://www.threadingbuildingblocks.org/
12 https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/parallel_for_

func.html
13 https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/range_

concept/blocked_range_cls.html
14 https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/partitioners/

auto_partitioner_cls.html

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/mutex
https://en.cppreference.com/w/cpp/thread/condition_variable/wait
https://en.cppreference.com/w/cpp/thread/thread
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/parallel_for_func.html
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/parallel_for_func.html
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/range_concept/blocked_range_cls.html
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/range_concept/blocked_range_cls.html
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/partitioners/auto_partitioner_cls.html
https://www.threadingbuildingblocks.org/docs/help/reference/algorithms/partitioners/auto_partitioner_cls.html

88 a multi-core solution for density-based clustering of sets

Algorithm 19: MC-Materialize-Neighborhoods(R, ϵ)
Input: Collection of sets R, distance threshold ϵ
Result: All neighborhoods in R w.r.t. ϵ
// shared structures between all threads

1 I ← Create-Index (R, ϵ); // read-only inverted index

2 do in parallel using k + 1 threads
3 R′← subrange for thread i , 1 ≤ i ≤ k + 1;
4 Compute-Pairs(R′, ϵ , I);
5 neiдhborhoods ← new associative array of size |R |;
6 foreach thread ti , 1 ≤ i ≤ k + 1 do
7 foreach (r , s) ∈ pairsi do // pairs stored with thread i
8 neiдhborhoods[r] ← neiдhborhoods[r] ∪ {s};
9 neiдhborhoods[s] ← neiдhborhoods[s] ∪ {r };

10 return neiдhborhoods

Algorithm 20: Compute-Pairs(R′, ϵ , I)
Input: Subrange of sets R′, distance threshold ϵ , inverted index I
Result: Set of similar pairs in R′ w.r.t. ϵ
// thread-local data structures of thread i, 1 ≤ i ≤ k + 1

1 pairsi ← ∅;
2 foreach r ∈ R′ in processing order do
3 M ← Probe(r , I , ϵ);
4 foreach (s ,po) ∈ M do
5 if Verify-Pair(r , s , ϵ ,po) then
6 pairsi ← pairsi ∪ {(r , s)};

7 return pairsi // pairs also remain in thread-local storage

Thread-local structures are maintained in a dedicated class that is used in combination
with tbb::enumerable_thread_specific15. For our experiments over the number of
cores, the maximum number of threads is set using tbb::task_arena16. The parallel
for-loop is the only explicit point of synchronization.

4.6 experimental results

In this section, we present experimental results for the multi-threaded extensions of
the join-based baseline, MC-Join-Clust, and our algorithm, MC-Spread.

algorithms We compare the multi-threaded version of our solution, MC-Spread
(cf. Section 4.4), against the multi-threaded version of the join-based approach, MC-
Join-Clust (cf. Section 4.5). If not otherwise speci�ed, MC-Spread is executed without
memory constraint. Both algorithms are implemented in C++ (2017 standard) and follow

15 https://www.threadingbuildingblocks.org/docs/help/reference/thread_local_storage/
enumerable_thread_specific_cls.html

16 https://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler/task_
arena_cls.html

https://www.threadingbuildingblocks.org/docs/help/reference/thread_local_storage/enumerable_thread_specific_cls.html
https://www.threadingbuildingblocks.org/docs/help/reference/thread_local_storage/enumerable_thread_specific_cls.html
https://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler/task_arena_cls.html
https://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler/task_arena_cls.html

4.6 experimental results 89

the single-threaded implementation regarding the asymmetric pre�x index, candidate
generation, and e�cient veri�cation. Spread is parallelized using the standard C++
threads library and Join-Clust is parallelized using Intel’s Threading Building Blocks
(cf. Remarks & Details in Section 4.4 and 4.5, respectively).

datasets All experiments were executed on 8 real-world datasets: (a) Six datasets
from a well-known set similarity join benchmark [45, 81]: BMS-POS, FLICKR, KOSARAK,
LIVEJ, ORKUT, and SPOT. Mann et al. [81] discuss the sources of the datasets and how
they are transformed into collections of sets17. We also test our multi-threaded algo-
rithms on two large process mining datasets, CELONIS1-2. Each process is represented
as a set (cf. Section 1.3.3). The collections of sets are deduplicated when reading the
respective �les from disk. Table 3.2 provides a summary of the datasets (cf. Section 3.5).

parameters Alongside the two algorithmic parameters, ϵ (neighborhood radius)
and minPts (min. neighborhood density for a point to be core), our implementations
take a third parameter to specify the maximum number of threads, i.e., how many
physical cores are used during execution. In our experiments, we vary the number
of threads and test di�erent values of ϵ . Since the single-threaded implementations
have been shown to be insensitive to minPts, we �x minPts to 16. We do not expect the
multi-threaded counterparts to be sensitive to minPts because the clustering is done
by a single thread (and only this thread modi�es the backlinks of MC-Spread). We
therefore focus on varying (i) the number of cores/threads by doubling the number
of cores starting from 1, {1, 2, 4, 8, 16}, and (ii) the distance threshold ϵ ∈ {2, 3, 4, 5}
(defaults in bold font).

environment Experiments have been conducted on a 64-bit machine with 2
physical Intel Xeon E5-2630 v3 CPUs, 2.40GHz. Each CPU is located on a separate
socket and has 8 physical cores, i.e., the total number of physical cores is 16 (hyper-
threading is disabled). All sockets share 96GiB of RAM, all cores on a socket share a
20MiB L3 cache, and each core has an individual 256KiB L2 cache and 64KiB L1 cache.
The machine runs Debian 10 Buster (Linux 4.19.0-12-amd64 #1 SMP Debian 4.19.152-1
(2020-10-18)). We compiled our code with clang18 version 7 and highest optimization
level (-O3). We measure the CPU time with clock_gettime19 and use the elapsed time
of the Linux perf20 tools to measure the wallclock time (the results were similar to
the results obtained with the Linux time21 command). We also use the perf tools
to measure the CPU utilization and to count the number of cache references/misses,
instructions, and CPU cycles. The memory usage is the heap peak of Linux memusage22

(using LD_PRELOAD). Every instance was executed in isolation (i.e., no other load on
the machine).

17 http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
18 https://releases.llvm.org/7.0.0/tools/clang/docs/ReleaseNotes.html
19 https://man7.org/linux/man-pages/man2/clock_gettime.2.html
20 https://man7.org/linux/man-pages/man1/perf.1.html
21 https://man7.org/linux/man-pages/man1/time.1.html
22 https://man7.org/linux/man-pages/man1/memusage.1.html

http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
https://releases.llvm.org/7.0.0/tools/clang/docs/ReleaseNotes.html
https://man7.org/linux/man-pages/man2/clock_gettime.2.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/memusage.1.html

90 a multi-core solution for density-based clustering of sets

runtime Figures 4.4-4.7 show our runtime results for an increasing number of
cores over all values of ϵ . The runtime is the wallclock time required to partition the
collection of sets into DBSCAN clusters without reading the input �le. Dashed lines23

show the single-threaded runtime divided by the number of cores, i.e., optimal linear
scalability.

The missing points in the plots are due to the respective algorithm running out of
memory (cf. Figures 4.8-4.11). MC-Join-Clust runs out of memory for many con�gu-
rations like its single-threaded counterpart. We attribute this to the (single-threaded)
materialization of growing neighborhoods. We observe that also MC-Spread runs out of
memory for some datasets, ϵ = 5, and a high number of threads. This is due to the fact
that more lookahead neighborhoods are computed and materialized simultaneously.

We observe that both algorithms MC-Spread and MC-Join-Clust show di�erent
scaling behavior in the number of cores for di�erent con�gurations. In the case of
ϵ = 2, the runtime of both algorithms is close to the optimal runtime when we increase
the number of cores for BMS-POS, KOSARAK, CELONIS1, and CELONIS2. These
con�gurations are characterized by rather small ϵ-neighborhoods (which is also the
reason why Join-Clust does not run out of memory). Note that the computation of
the neighborhoods may be expensive despite their small size, for example, in the case
of the CELONIS datasets (due to many candidates). In this scenario, the clustering
thread bene�ts the most from higher parallelism of the neighborhood threads. For
some datasets, MC-Spread scales better than MC-Join-Clust with the number of cores
(e.g., KOSARAK or CELONIS1).

12 4 8 160
2
4
6

number of cores

ru
nt

im
e

[s
]

(a) BMS-POS

12 4 8 160

100

200

number of cores

ru
nt

im
e

[s
]

(b) FLICKR

12 4 8 160
20
40
60

number of cores

ru
nt

im
e

[s
]

(c) KOSARAK

12 4 8 160

100

200

number of cores

ru
nt

im
e

[s
]

(d) LIVEJ

12 4 8 160
20
40
60
80

number of cores

ru
nt

im
e

[s
]

(e) ORKUT

12 4 8 160
50

100
150

number of cores

ru
nt

im
e

[s
]

(f) SPOT

12 4 8 160

500

1,000

number of cores

ru
nt

im
e

[s
]

(g) CELONIS1

12 4 8 160
50

100

number of cores

ru
nt

im
e

[s
]

(h) CELONIS2

MC-Spread Optimal MC-Join-Clust Optimal

Figure 4.4: Wallclock time over the number of cores, ϵ = 2, minPts = 16.

23 We do not include the dashed line for Join-Clust and the FLICKR dataset since the sequential Join-Clust
runs out of memory; see discussion on memory usage, Figures 4.8-4.11.

4.6 experimental results 91

12 4 8 160
5

10
15

number of cores

ru
nt

im
e

[s
]

(a) BMS-POS

12 4 8 160
50

100
150

number of cores

ru
nt

im
e

[s
]

(b) FLICKR

12 4 8 160

100

200

number of cores

ru
nt

im
e

[s
]

(c) KOSARAK

12 4 8 160
50

100
150

number of cores

ru
nt

im
e

[s
]

(d) LIVEJ

12 4 8 160

50

100

number of cores

ru
nt

im
e

[s
]

(e) ORKUT

12 4 8 160
50

100
150

number of cores

ru
nt

im
e

[s
]

(f) SPOT

12 4 8 160
500

1,000
1,500
2,000

number of cores

ru
nt

im
e

[s
]

(g) CELONIS1

12 4 8 160
100
200

number of cores
ru

nt
im

e
[s

]
(h) CELONIS2

MC-Spread Optimal MC-Join-Clust Optimal

Figure 4.5: Wallclock time over the number of cores, ϵ = 3, minPts = 16.

12 4 8 160
20
40

number of cores

ru
nt

im
e

[s
]

(a) BMS-POS

12 4 80
100
200
300

number of cores

ru
nt

im
e

[s
]

(b) FLICKR

12 4 8 160
200
400
600

number of cores

ru
nt

im
e

[s
]

(c) KOSARAK

12 40

200

400

number of cores

ru
nt

im
e

[s
]

(d) LIVEJ

12 4 8 160

100

200

number of cores

ru
nt

im
e

[s
]

(e) ORKUT

12 4 8 160
100
200
300

number of cores

ru
nt

im
e

[s
]

(f) SPOT

12 4 8 160
2,000
4,000
6,000

number of cores

ru
nt

im
e

[s
]

(g) CELONIS1

12 4 8 160
200
400
600
800

number of cores

ru
nt

im
e

[s
]

(h) CELONIS2

MC-Spread Optimal MC-Join-Clust Optimal

Figure 4.6: Wallclock time over the number of cores, ϵ = 4, minPts = 16.

For both solutions, the other datasets (FLICKR, LIVEJ, ORKUT, and SPOT) seem to
be harder due to their large neighborhoods (even for ϵ = 2; cf. memory consumption
of the respective instances). We observe that MC-Spread reaches a plateau for a higher

92 a multi-core solution for density-based clustering of sets

12 4 8 160

50

100

number of cores

ru
nt

im
e

[s
]

(a) BMS-POS

120
200
400
600

number of cores

ru
nt

im
e

[s
]

(b) FLICKR

12 40

500

1,000

number of cores

ru
nt

im
e

[s
]

(c) KOSARAK

120
200
400
600
800

1,000

number of cores

ru
nt

im
e

[s
]

(d) LIVEJ

120

200

400

number of cores
ru

nt
im

e
[s

]
(e) ORKUT

12 40

200

400

number of cores

ru
nt

im
e

[s
]

(f) SPOT

12 4 8 160

5

10
·103

number of cores

ru
nt

im
e

[s
]

(g) CELONIS1

12 4 8 160

500

1,000

number of cores

ru
nt

im
e

[s
]

(h) CELONIS2

MC-Spread Optimal MC-Join-Clust Optimal

Figure 4.7: Wallclock time over the number of cores, ϵ = 5, minPts = 16.

number of cores (e.g., more than 2 resp. 4 cores in case of SPOT resp. LIVEJ). This was
to be expected because the clustering thread has the highest share of overall runtime
for these datasets (i.e., about 41.3% for FLICKR, 34.5% for LIVEJ, 45.2% for ORKUT, and
43.7% for SPOT; ϵ = 3, minPts = 16).

For higher values of ϵ , the runtime results are comparable but we make the following
additional observations: (i) MC-Spread reaches a plateau also for the KOSARAK dataset
and (ii) the runtime gap between MC-Join-Clust and MC-Spread increases for 16 cores
and BMS-POS (due to growing neighborhoods).

We compare the speedups of MC-Spread and MC-Join-Clust in Table 4.1 for ϵ = 2
(smallest neighborhoods) and ϵ = 5 (largest neighborhoods). The speedup of algorithm
A (for a particular ϵ and minPts) is calculated as speedup(A) = 1-core time of A

max-core time of A , where
max-core time denotes the runtime obtained with the highest number of cores for which
the algorithm does not run out of memory. For example, if an algorithm runs out of
memory for ≥ 8 cores, max-core time is the runtime obtained for 4 cores.

MC-Join-Clust shows less speedup for higher values of ϵ and BMS-POS (e.g., 8.8 for
ϵ = 2 compared to 2.2 for ϵ = 5), CELONIS1 (e.g., 6.2 for ϵ = 2 compared to 4.1 for
ϵ = 5), and CELONIS2 (e.g., 9.8 for ϵ = 2 compared to 4.2 for ϵ = 5). For the CELONIS
datasets, both MC-Spread and MC-Join-Clust show good runtimes for high values of
ϵ and an increasing number of cores with speedups of about 9.3 and 4.3 (CELONIS1,
ϵ = 3), and 10.4 and 8.7 (CELONIS2, ϵ = 3), respectively. Despite reaching a plateau,
we conclude that MC-Spread shows a higher speedup compared to MC-Join-Clust for
all con�gurations and datasets.

Finally, the clustering thread of MC-Spread incurs some additional overhead due to
the density counter updates. However, if we compare Figure 4.1 (Section 4.3.2) and

4.6 experimental results 93

Figure 4.5, MC-Spread scales considerably better than Simple-MC-Spread for FLICKR
and KOSARAK, and retains its good runtime behavior for CELONIS1.

Table 4.1: Speedups (and the corresponding number of cores) for each dataset and ϵ ∈ {2, 5}
(NA . . . not available); speedup of algorithm A is speedup(A) = 1-core time of A

max-core time of A .

(a) ϵ = 2 (smallest neighborhoods).

Dataset MC-Spread MC-Join-Clust
Speedup Cores Speedup Cores

BMS-POS 10.2 16 8.8 16
FLICKR 2.2 16 NA NA

KOSARAK 7.7 16 3.6 16
LIVEJ 2.2 16 1.4 16

ORKUT 1.6 16 1.3 16
SPOT 1.9 16 1.2 16

CELONIS1 10.2 16 6.2 16
CELONIS2 10.7 16 9.8 16

(b) ϵ = 5 (largest neighborhoods).

Dataset MC-Spread MC-Join-Clust
Speedup Cores Speedup Cores

BMS-POS 5.1 16 2.2 16
FLICKR 2.0 2 NA NA

KOSARAK 2.7 4 NA NA
LIVEJ 2.0 2 NA NA

ORKUT 2.0 2 NA NA
SPOT 1.8 4 NA NA

CELONIS1 5.1 16 4.1 16
CELONIS2 8.0 16 4.2 16

memory usage Figures 4.8-4.11 show our results for the main memory consump-
tion of MC-Spread and MC-Join-Clust. The following structures are stored on the
heap for both algorithms: the collection of sets, the (asymmetric) inverted index, the
candidates, and the lookahead neighbors. MC-Join-Clust also stores the materialized
ϵ-neighborhoods on the heap. MC-Spread additionally stores the backlinks, the disjoint-
set, the lookahead neighborhood array, and the structures used for synchronization
(condition variables, atomic counters) on the heap. Interestingly, MC-Join-Clust is
more memory e�cient than its sequential counterpart and we can compute some data
points for which the sequential implementation runs out of memory. The sequential
Join-Clust maintains one large array of pairs, pairs , whereas MC-Join-Clust maintains
k + 1 individual arrays, pairsi (1 ≤ i ≤ k + 1) for k + 1 threads, and

∑k+1
i=1 |pairsi | may

be smaller than pairs (due to di�erent capacities of std::vector24).

24 https://en.cppreference.com/w/cpp/container/vector

https://en.cppreference.com/w/cpp/container/vector

94 a multi-core solution for density-based clustering of sets

12 4 8 160.01

0.1

1

number of cores

m
em

or
y

[G
iB

]

(a) BMS-POS

12 4 8 160.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(b) FLICKR

12 4 8 160.1

1

10

number of cores

m
em

or
y

[G
iB

]

(c) KOSARAK

12 4 8 160.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(d) LIVEJ

12 4 8 161

10

100

number of cores
m

em
or

y
[G

iB
]

(e) ORKUT

12 4 8 160.01
0.1

1
10

100

number of cores

m
em

or
y

[G
iB

]

(f) SPOT

12 4 8 161

10

number of cores

m
em

or
y

[G
iB

]

(g) CELONIS1

12 4 8 160.1

1

number of cores

m
em

or
y

[G
iB

]

(h) CELONIS2

MC-Spread MC-Join-Clust

Figure 4.8: Main memory over the number of cores, ϵ = 2, minPts = 16.

12 4 8 160.01

0.1

1

number of cores

m
em

or
y

[G
iB

]

(a) BMS-POS

12 4 8 160.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(b) FLICKR

12 4 8 160.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(c) KOSARAK

12 4 8 160.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(d) LIVEJ

12 4 8 161

10

100

number of cores

m
em

or
y

[G
iB

]

(e) ORKUT

12 4 8 160.01
0.1

1
10

100

number of cores

m
em

or
y

[G
iB

]

(f) SPOT

12 4 8 161

10

number of cores

m
em

or
y

[G
iB

]

(g) CELONIS1

12 4 8 160.1

1

number of cores

m
em

or
y

[G
iB

]

(h) CELONIS2

MC-Spread MC-Join-Clust

Figure 4.9: Main memory over the number of cores, ϵ = 3, minPts = 16.

Despite small di�erences, the memory usage of MC-Join-Clust is not sensitive to the
number of cores for most datasets. This was to be expected because the materialized
neighborhoods dominate the memory consumption of the join-based solution. In
contrast, the memory usage of MC-Spread increases with the number of cores, and

4.6 experimental results 95

12 4 8 160.01
0.1

1
10

number of cores

m
em

or
y

[G
iB

]

(a) BMS-POS

1 2 4 80.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(b) FLICKR

12 4 8 160.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(c) KOSARAK

1 2 40.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(d) LIVEJ

12 4 8 161

10

100

number of cores

m
em

or
y

[G
iB

]

(e) ORKUT

12 4 8 160.01
0.1

1
10

100

number of cores

m
em

or
y

[G
iB

]

(f) SPOT

12 4 8 161

10

number of cores

m
em

or
y

[G
iB

]

(g) CELONIS1

12 4 8 160.1

1

10

number of cores

m
em

or
y

[G
iB

]
(h) CELONIS2

MC-Spread MC-Join-Clust

Figure 4.10: Main memory over the number of cores, ϵ = 4, minPts = 16.

12 4 8 160.01
0.1

1
10

100

number of cores

m
em

or
y

[G
iB

]

(a) BMS-POS

1 20.1

1

number of cores

m
em

or
y

[G
iB

]

(b) FLICKR

1 2 40.1
1

10
100

number of cores

m
em

or
y

[G
iB

]

(c) KOSARAK

1 20.1

1

10

number of cores

m
em

or
y

[G
iB

]

(d) LIVEJ

1 21

10

number of cores

m
em

or
y

[G
iB

]

(e) ORKUT

1 2 40.01
0.1

1
10

100

number of cores

m
em

or
y

[G
iB

]

(f) SPOT

12 4 8 161

10

number of cores

m
em

or
y

[G
iB

]

(g) CELONIS1

12 4 8 160.1

1

10

number of cores

m
em

or
y

[G
iB

]

(h) CELONIS2

MC-Spread MC-Join-Clust

Figure 4.11: Main memory over the number of cores, ϵ = 5, minPts = 16.

MC-Spread runs out of memory for ϵ = 5 on some con�gurations (FLICKR, LIVEJ,
and ORKUT for more than 2 cores; KOSARAK and SPOT for more than 4 cores). A
higher number of cores implies more concurrent neighborhood computations and
materializations. Consequently, more main memory is consumed since the deallocation

96 a multi-core solution for density-based clustering of sets

is done by a single clustering thread. One way to mitigate this e�ect is to limit the
number of lookahead neighborhoods that are materialized simultaneously (as described
in Section 4.2). In the case of the CELONIS datasets and multiple cores, MC-Spread
consumes even more memory than MC-Join-Clust, which is due to the fact that many
lookahead neighborhoods are materialized simultaneously. In combination with the
other structures (disjoint-set, backlinks, and the synchronization structures), MC-
Spread consumes more memory than the (relatively small) neighborhoods of MC-Join-
Clust (which maintains no additional structures). For higher values of ϵ this e�ect is
superseded by the neighborhoods that grow larger and dominate the memory.

caching We also study the number of CPU cycles and the caching to assess the
bene�ts of our MC-Spread implementation quantitatively (compared to Simple-MC-
Spread). For a comparison with Simple-MC-Spread, we refer to Figure 4.2 for the
number of CPU cycles and to Figure 4.3 for the cache misses (ϵ = 3, minPts = 16; cf.
Section 4.3.2). We compare the CPU cycles and cache misses for the same three datasets
(CELONIS1, KOSARAK, and FLICKR) and parameters (ϵ = 3 and minPts = 16). The
results are depicted in Figure 4.12 (CPU cycles) and Figure 4.13 (cache misses).

12 4 8 160
5

10
15
·1012

number of cores

cy
cl

es
[#

]

(a) CELONIS1

12 4 8 160

0.5

1
·1012

number of cores

cy
cl

es
[#

]

(b) KOSARAK

12 4 8 160
200
400
600
·109

number of cores

cy
cl

es
[#

]

(c) FLICKR

MC-Spread MC-Join-Clust

Figure 4.12: CPU cycles for CELONIS1, KOSARAK, and FLICKR, ϵ = 3, minPts = 16.

12 4 8 160
20
40
60
80
·109

number of cores

m
iss

es
[#

]

(a) CELONIS1

12 4 8 160
1
2
3
4
·109

number of cores

m
iss

es
[#

]

(b) KOSARAK

12 4 8 160

200

400
·106

number of cores

m
iss

es
[#

]

(c) FLICKR

MC-Spread MC-Join-Clust

Figure 4.13: Cache misses for CELONIS1, KOSARAK, and FLICKR, ϵ = 3, minPts = 16.

For CELONIS1, the results are similar to the results obtained for Simple-MC-Spread.
In the case of KOSARAK and FLICKR, however, we observe that both the number of
CPU cycles and the number of cache misses grow at a much lower rate for MC-Spread
when we increase the number of cores. For 16 cores and the FLICKR dataset, we
measure about an order of magnitude fewer cache misses and about 23x fewer CPU
cycles for MC-Spread than for Simple-MC-Spread. This suggests that our adaptations
to improve over Simple-MC-Spread work.

4.6 experimental results 97

constrained memory Figures 4.14 (memory consumption) and 4.15 (runtime)
show our experimental results obtained for MC-Spread with memory constraint (cf.
Section 4.3.3). We present our results for ϵ = 5 and the hardest datasets with respect to
memory consumption, i.e., FLICKR, KOSARAK, LIVEJ, ORKUT, and SPOT. Recall that
the con�gurations ran out of memory without the memory constraint for more than 2
cores (FLICKR, LIVEJ, and ORKUT) and 4 cores (KOSARAK and SPOT), respectively
(cf. Figure 4.11). In our tests, we �x the number of cores to 8, and bound the memory
to 8GiB, 16GiB, and 32GiB, respectively.

8 16 321

10

100

constraint [GiB]

m
em

or
y

[G
iB

]

(a) FLICKR

8 16 321

10

100

constraint [GiB]

m
em

or
y

[G
iB

]

(b) KOSARAK

8 16 321

10

100

constraint [GiB]

m
em

or
y

[G
iB

]

(c) LIVEJ

8 16 321

10

100

constraint [GiB]

m
em

or
y

[G
iB

]

(d) ORKUT

8 16 321

10

100

constraint [GiB]

m
em

or
y

[G
iB

]

(e) SPOT

MC-Spread (constrained) Constraint

Figure 4.14: Main memory over memory constraint, 8 cores, ϵ = 5, minPts = 16.

8 16 320
100
200
300

constraint [GiB]

ru
nt

im
e

[s
]

(a) FLICKR

8 16 320
100
200
300
400

constraint [GiB]

ru
nt

im
e

[s
]

(b) KOSARAK

8 16 320

200

400

constraint [GiB]

ru
nt

im
e

[s
]

(c) LIVEJ

8 16 320
100
200
300

constraint [GiB]

ru
nt

im
e

[s
]

(d) ORKUT

8 16 320
100
200

constraint [GiB]

ru
nt

im
e

[s
]

(e) SPOT

MC-Spread (constrained) MC-Spread (2 cores) MC-Spread (4 cores)

Figure 4.15: Wallclock time over memory constraint, 8 cores, ϵ = 5, minPts = 16.

Our experiments show that bounding the memory allows us to execute all con�gu-
rations. Figure 4.14 depicts the memory usage over the given constraints. The memory
that is allocated by MC-Spread with memory constraint is quite close to the given
memory bound (dashed line). This also con�rms that the lookahead neighborhoods
dominate the memory since our constraint only considers the allocated space of the
lookahead neighborhoods. We observe the largest gap (about 2GiB) between consumed

98 a multi-core solution for density-based clustering of sets

memory and the given bound for a constraint of 8GiB and the ORKUT dataset (ϵ = 5).
Figure 4.15 shows the runtime results for MC-Spread with constrained memory.

The dashed lines show the runtimes without memory constraint (cf. Figure 4.7) for
the respective con�gurations using 2 cores (FLICKR, LIVEJ, and ORKUT) and 4 cores
(KOSARAK and SPOT), respectively. We observe small di�erences in runtime. However,
bounding the memory does not result in a signi�cant performance degradation for
these con�gurations. Due to the large neighborhoods, the runtime of MC-Spread is
dominated by the clustering thread and thus, MC-Spread reaches a plateau for more
cores (despite using more memory).

4.7 conclusion & outlook

In this chapter, we studied the multi-threaded implementation of Spread, MC-Spread.
We introduced the Simple-MC-Spread algorithm, which is based on the observation
that most of the overall runtime is spent in the neighborhood computation for some
con�gurations. The k + 1 threads are split into k threads that compute the lookahead
neighborhoods and one thread that clusters the sets into DBSCAN clusters based on the
available neighborhoods. The clustering thread also frees the memory of the respective
neighborhoods. To prevent the neighborhood threads from �lling up the memory (if
they are much faster than the clustering thread), we proposed a solution that bounds
the memory consumption. We made two observations that limit the scalability of
Simple-MC-Spread: (i) Neighborhood threads may be too slow and (ii) the atomic
density counters are subject to contention and false sharing. For each observation, we
proposed a solution to mitigate the respective limitation. We implemented MC-Spread
and compared it against a multi-threaded implementation of Join-Clust, MC-Join-Clust.
MC-Join-Clust also parallelizes the neighborhood computation (with k + 1 threads) and
executes a sequential DBSCAN algorithm based on the materialized neighborhoods.
Our experiments revealed that the speedup of both multi-threaded algorithms is limited
for some datasets (FLICKR, LIVEJ, ORKUT, and SPOT) due to the large number of
(lookahead) neighbors. MC-Join-Clust ran out of memory for many instances of these
datasets while MC-Spread was able to compute most of the con�gurations even without
memory constraint (and all con�gurations with the memory constraint enabled). In
terms of runtime, both MC-Join-Clust and MC-Spread reached a plateau for some
datasets with large neighborhoods. The number of CPU cycles and cache misses
con�rmed that MC-Spread bene�ts from our adaptations with respect to Simple-MC-
Spread. Finally, we evaluated the memory-constrained version of MC-Spread and
observed that this has only little impact on the runtime in the relevant settings (large
neighborhoods) because the clustering thread is the limiting factor.

Outlook

From our experiments, we observe that con�gurations can be categorized based on the
neighborhood computation (cheap or expensive) and the size of the neighborhoods
(small or large). (i) Small neighborhoods that are cheap to compute are not problematic.

4.7 conclusion & outlook 99

(ii) If the neighborhoods are small but expensive to compute (e.g., CELONIS1 and CELO-
NIS2), the speed of the neighborhood computations is the limiting factor. Therefore, it
is bene�cial to have as many threads as possible for the neighborhood computation.
(iii) A large neighborhood challenges both MC-Spread and MC-Join-Clust (e.g., for
FLICKR, LIVEJ, ORKUT, and SPOT). The join-based solution, MC-Join-Clust, su�ers
from the expensive materialization and runs out of memory quickly. In MC-Spread, the
(single) clustering thread has to do more work than the neighborhood threads (which
split the work). As a future research direction, we will aim to move load from the
clustering thread to the other threads without worsening the caching of MC-Spread.

Other future work includes (i) pinning threads to sockets and evaluating the memory
layout with respect to our architecture (NUMA-awareness) and (ii) to compare against
state-of-the-art multi-core DBSCAN algorithms that cluster sets according to our
problem de�nition. Another interesting research path is to solve the set clustering
problem in a distributed environment. Remote direct memory access (RDMA) has
been successfully used to design scalable distributed index structures and algorithms,
including distributed joins [14, 15] and transactions [134], distributed B+ trees [140] and
key-value stores [85], and new schemes for high availability of database systems [135].
Therefore, a distributed algorithm that is designed for fast, RDMA-capable networks
could enable scalability beyond the main memory bounds of a single machine.

5
C O N C L U S I O N S & F U T U R E W O R K

In this thesis we studied two types of similarity queries: (1) top-k subtree similarity
queries for ordered labeled trees and (2) density-based clustering for collections of
sets. Instead of equality predicates, a similarity query evaluates similarity predicates,
i.e., two data items are compared using a similarity function. We used the similarity
function as a black box and focused on the evaluation of the respective query types.
We developed specialized index structures and algorithms for the two query types, and
empirically evaluated them against state-of-the-art solutions.

The top-k subtree similarity query �nds and ranks the k most similar subtrees in a
large document tree with respect to a given query tree. We considered ordered labeled
trees and used the tree edit distance to assess the similarity between two trees. Previous
solutions su�er either from high memory requirements or high runtimes: Index-based
solutions build an index to answer a query fast, but the index is quadratic in the input
size and does not support updates. In contrast, an index-free solution has a small
memory footprint (decoupled from the input size), but is slow because it must scan
the entire document tree for each single query. We developed SlimCone, an updatable,
linear-space index structure that enables us to retrieve promising subtrees �rst. A
subtree is promising if it has many labels with the query tree in common. Our index is
based on inverted lists and achieves linear space by avoiding full list materialization.
Instead, we build relevant parts of the lists on the �y. Our experiments con�rmed the
e�ciency, the e�ectiveness, and the memory scalability of our solution. We achieved
runtime improvements of up to four orders of magnitude and were able to outperform
the index-based state of the art with respect to memory usage, indexing time, and the
number of distance computations.

Density-based clustering techniques identify clusters based on the notion of den-
sity, i.e., clusters are regions of high density that are separated by regions of lower
density. The DBSCAN algorithm is the most popular representative of density-based
clustering techniques. It starts with a random data item and recursively expands dense
neighborhoods until a neighborhood of low density is encountered. This is done until
all data items have been processed. Indexes are used to retrieve the neighbors of a
particular data item. We studied density-based clustering in the context of sets under
the Hamming distance. The DBSCAN algorithm requires a so-called symmetric index
that returns all neighbors of a particular set (independently of the order in which
the sets are processed). Unfortunately, the symmetric index is less e�ective than its
asymmetric counterpart that has been developed for set similarity joins. Because the
asymmetric index returns only a speci�c part of the complete neighborhood, the looka-
head neighbors, it cannot be readily combined with the DBSCAN algorithm (due to the
neighborhood-by-neighborhood processing order). Join-based clustering solutions can
use asymmetric indexes but have to materialize all neighborhoods in main memory.

101

102 conclusions & future work

The size of the neighborhoods may be quadratic in the input size, which limits the
applicability of this approach. We introduced Spread, a DBSCAN-compliant solution
for sets, which is able to use asymmetric indexes while only requiring linear space.
To this end, we impose a processing order and only materialize a single lookahead
neighborhood at a time. So-called backlinks store su�cient information to derive a
correct clustering despite the usage of asymmetric indexes. Our experiments suggest
that Spread is competitive with the join-based solution in terms of runtime while
retaining the memory e�ciency of the DBSCAN algorithm.

Finally, we studied MC-Spread, a multi-core extension of our single-core solution for
the density-based clustering of sets. We presented an approach to parallelize Spread by
interleaving neighborhood computation and clustering: All but one thread are used
to compute (and materialize) lookahead neighborhoods, and a single thread is used
to build the clusters. We proposed solutions for cache locality and load balancing
issues that arise in the multi-core implementation of Spread. We implemented MC-
Spread as well as a multi-threaded version of the join-based solution, MC-Join-Clust,
and evaluated them experimentally for a varying number of cores. Our experiments
suggest that both algorithms scale well with the number of cores for some datasets
(with small neighborhoods that are expensive to compute). For datasets with very
large neighborhoods, the sequential clustering thread dominates the runtime and limits
scalability.

Future Work

Our solution to answer top-k subtree similarity queries, SlimCone, uses lower bounds
on the size and the labels of the trees. It would be interesting to include a lower bound
that considers the structure of the trees as well. If integrated carefully into our index
structure, this could further improve the performance due to the additional pruning
power. Furthermore, SlimCone is designed as a single-core algorithm. Extending
SlimCone to multi-core and/or distributed environments would be another interesting
research direction. A starting point are the partitions obtained from the size lower
bound that promise to allow parallelization with little synchronization. Finally, adapt-
ing SlimCone to answer top-k subtree similarity queries for unordered trees (for which
computing the tree edit distance has been shown to be NP-complete) could be another
future research direction.

We designed our solution for the density-based set clustering problem, Spread, as a
single-core algorithm. In practice, an extension to multi-core and/or distributed envi-
ronments is desirable. Chapter 4 presented a multi-core extension for density-based
clustering of sets, MC-Spread, that is compared against a multi-core version of the
join-based approach, MC-Join-Clust. It would be interesting to empirically compare
MC-Spread also to other parallel DBSCAN solutions. Another interesting research
direction is to control the memory consumption of MC-Spread. Finally, it would be
interesting to evaluate Spread and MC-Spread on additional similarity functions and
asymmetric indexes.

For both types of similarity queries, top-k subtree similarity queries and density-

conclusions & future work 103

based clustering of sets, it would be interesting to design and evaluate solutions for
distributed environments with modern networks. Apart from providing high through-
put and low latency, modern networking hardware also supports remote direct memory
access (RDMA). In a distributed environment, RDMA allows a machine to directly ac-
cess the main memory of another machine (bypassing the operating system kernel and
the CPU). We see an opportunity that carefully designed algorithms for RDMA-capable
networks could enable solutions that scale beyond the main memory bounds of a single
machine.

A
R E P R O D U C I B I L I T Y PA C K A G E

a.1 hardware, operating system, and software

All experiments were tested on a 64-bit machine with

• 2 physical processors, Intel(R) Xeon(R) CPUs E5-2630 v3 2.40 GHz,
• 8 cores per physical processor (⇒ 16 logical processors),
• 3 cache levels with sizes 32 KiB (L1d), 32 KiB (L1i), 256 KiB (L2), and 20.480 KiB

(L3),
• 96 GiB of main memory @ 2.133 MHz (1.866 MHz con�gured clock speed),
• 2x 1.8 TiB HDDs as secondary storage with a theoretical performance of

(1) read (cache miss/hit): 0,5/0,1ms, (2) write: 0,015ms, (3) seek: 0,5ms,
• Debian 9 Stretch (Linux 4.9.0-8-amd64 #1 SMP Debian 4.9.144-3 (2019-02-02)

x86_64) as OS, and
• the following software packages installed:

• ansible 1 (version ≥ 2.2.1.0)
• wget (version ≥ 1.18) and tar (version ≥ 1.29)

We expect the experiments to run on any machine with modern hardware and the
abovementioned versions of Debian Linux and Ansible installed. Ansible will install all
additional software packages (using apt).

a.2 qick start

Open a terminal and follow three steps:

1. Install Ansible, wget, and tar
1 sudo apt-get install ansible wget tar # requires sudo/root permissions

2. Download and extract reproducibility package 2

1 wget https://kitten.cosy.sbg.ac.at/index.php/s/fjT3eQ76JekgAK3/download \

2 -O sigmod2019-reproducibility.tar.gz

3 tar xzvf sigmod2019-reproducibility.tar.gz

3. Run the main Ansible playbook
1 cd sigmod2019-reproducibility

2 # asks for sudo password to install packages (hit "Enter" if you are root)

3 ansible-playbook -K run_all.yaml

1 https://www.ansible.com/
2 https://kitten.cosy.sbg.ac.at/index.php/s/fjT3eQ76JekgAK3

105

https://www.ansible.com/
https://kitten.cosy.sbg.ac.at/index.php/s/fjT3eQ76JekgAK3

106 reproducibility package

a.3 reproducibility package

The main Ansible playbook run_all.yaml will automatically (a) install all required
software packages, (b) download and extract datasets 3 (2.2 GiB) and queries 4 (76 KiB),
(c) compile the C++ source code, (d) set up and run all experiments, (e) extract the raw
experimental results, and (f) compile the paper with the obtained results.

a.3.1 Datasets, Queries, and Results

Both datasets and queries contain two directories xmark/ and realworld/. The xmark/
directory contains �ve synthetic datasets (generated using the XMark benchmark) and
for each XMark dataset we extracted four queries with 4, 8, 16, 32, and 64 nodes, re-
spectively (i.e., 100 queries in total). Similarly, the realworld/ directory contains three
real-world datasets (TreeBank, DBLP, and SwissProt) and for each real-world dataset
we extracted four queries with 4, 8, 16, 32, and 64 nodes, respectively (i.e., 60 queries
in total). Queries were extracted from the corresponding datasets. Naming example:
xmark4_query_16_2.xml is the second query with 16 nodes that was extracted from
the XMark4 dataset and will be used for this dataset in our experiments.

By default, all experimental results are written into a directory results/, which
is created automatically. For each of the following plots a dedicated subdirectory is
created in results/:

• Figure 12: fig12_ab/ fig12_cd/ fig12_e/ fig12_f/

• Figure 13: fig13_ab/ fig13_cd/

• Figure 14: fig14_ab/ fig14_cd/

• Figure 15: fig15_ab/ fig15_cd/

• Figure 16: fig16_ab/ fig16_cd/

This naming convention for subdirectories is also used in the source code directory
of our paper: The directory paper/figs/experiments/ contains the pgfplots �les,
and the corresponding result �les can be found in paper/csv/ (copied from results/).

a.3.2 Package Details

The package contains several Python (py) and Ansible (yaml) �les. Further, the C++
source code for all algorithms (directories tasm-struct/ and slim/) as well as the
paper’s source code (directory paper/) are provided. Finally, some directories are
generated during execution. This section summarizes the most important parts and
behaviors.

ansible We use Ansible to automate our experiments, i.e., the main pipeline to
produce the results of our paper is executed using Ansible. Ansible uses yaml �les and
the purpose of the respective yaml �les can be summarized as follows. run_all.yaml

3 https://kitten.cosy.sbg.ac.at/index.php/s/jYJC2xzPCNnjJZD
4 https://kitten.cosy.sbg.ac.at/index.php/s/m4JixE8xXKG7xkM

https://kitten.cosy.sbg.ac.at/index.php/s/jYJC2xzPCNnjJZD
https://kitten.cosy.sbg.ac.at/index.php/s/m4JixE8xXKG7xkM

A.3 reproducibility package 107

installs all required software packages and executes all other Ansible (yaml) �les (in
this order):

get_data.yaml Fetches the datasets and queries used for our experiments.
build_code.yaml Automatically builds the C++ source code for the algorithms

Tasm (TASM-Postorder [8]), Struct (StructureSearch [31]), and our algorithms
Merge, Cone, Slim, and Slim-Dyn [69].

build_symlinks.yaml Creates the subdirectories for all �gures and the sym-
bolic links to the datasets and queries of the respective �gures. For exam-
ple, datasets/fig13_ab/ contains symbolic links to all XMark datasets and
queries/fig13_ab/ contains symbolic links to all XMark queries with |Q | = 16
nodes.

run_experiments.yaml Executes experiments for a speci�c con�guration of �g-
ure number, number of runs and simultaneously executed processes, a list of
k values, a default k value (for experiments with �xed k), and a list of update
counts (repeated calls of profile-all.py, see below).

copy_result_files.yaml Copies result �les from results/ to paper/csv/.

Afterwards, the paper is compiled (Makefile) and the resulting PDF �le can be found
in paper/paper.pdf.

The following parameters can be passed to run_all.yaml using JSON syntax:

"vary_k" Space-separated string of integers for varying-k experiments (default: “1
10 100”).

"default_k" Single integer that is used for experiments with a �xed k (default: 10).
"runs" Number of runs per experiments (robustness parameter; default: 1).
"processes" Number of simultaneously executed processes (robustness parameter;

default: 1).
"updates" Space-separated string of integers for update experiments (default: “1

10 100 ... 1000000”).

Example: k ∈ {2, 4, 6}, �xed k = 5, and 7 simultaneously executed processes
1 ansible-playbook -K run_all.yaml --extra-vars= \

2 ’{␣"vary_k":␣"2␣4␣6",␣"default_k":␣5,␣"processes":␣7␣}’

python We use Python (python3) to (1) run the experiments, (2) extract the re-
quired statistics from the experimental results, and (3) create the result �les s.t. they
can be used in our paper. Run scripts with “--help” to show all options.

profile-all.py Calls profile.py repeatedly to run all experiments for �gures
12–16.

profile.py Executes experiments for a given list of k values, a directory of XML
datasets, a directory of XML queries using a given algorithm (C++ binary). The
results are stored in a Python dictionary that is serialized to disk. To speed up the
experiments, the number of simultaneously executed processes can be speci�ed
using “--maxprocesses” (default: 1; max. robustness).

108 reproducibility package

mystatistics.py Extracts all statistics from a given serialized dictionary to seper-
ate stat �les (in CSV format), one for each statistics entry found in the dictionary.
Typically, this script is executed for each single serialized dictionary produced
by profile.py. Adaptations may be necessary if the experiments are changed.

merge.py/replaceheader.py/suffixcolumnorder.py Helper scripts that
merge multiple stat �les and postprocess them s.t. they can be used in our paper
plots (which use pgfplots). Adaptations may be necessary if the experiments
are changed.

directory structure of the package

common/ Helper �les that are used by profile.py.
paper/ LATEX source code of our paper. Compile with make.
slim/ Source code of our algorithms Merge, Cone, Slim, and Slim-Dyn [69]. Build

with -DNO_LOG and -DNO_INALGO_TIMINGS, i.e., using
cmake -D CMAKE_CXX_FLAGS="-DNO_LOG -DNO_INALGO_TIMINGS".

tasm-struct/ Source code of the competitor algorithms Tasm (TASM-Postorder [8])
and Struct (StructureSearch [31]). Build with -DNO_INALGO_TIMINGS, i.e., using
cmake -D CMAKE_CXX_FLAGS="-DNO_INALGO_TIMINGS".

directories created during execution

datasets/ All datasets, fetched automatically by the Ansible script run_all.yaml.
queries/ All queries, fetched automatically by the Ansible script run_all.yaml.
tmp/ The C++ binary to be executed is copied into this directory for the experiments.
results/ All raw exp. results and result �les for our paper plots. Subdirectory

naming is discussed in Section A.3.1.

a.4 flexibility

a.4.1 Parameters

Relevant parameters for our research problem are the dataset (document), the query,
and the result size k . We consider a broad range for each single parameter in our paper,
i.e., we varied dataset sizes (synthetic and real-world, ranging from 83 MiB to 6.1 GiB),
query sizes (�ve query sizes for each dataset, 4 – 64 nodes), and result size k (range: 1,
10, . . .104). We track the build time and the size of the index, the query time, and the
number of veri�ed subtrees.

Additional datasets and queries can be included into the datasets/ and queries/

directories, respectively. Note that both need to be XML �les and that the �lename
of the query must have the dataset name as a pre�x. Only if this is the case, the
script profile.py will use the query as input for the respective dataset. Finally, the
symbolic link to the dataset resp. query in the �gure subdirectory of the dataset/ resp.
queries/ directory must be created. For example, to include a new dataset abc.xml

A.5 time estimates 109

and a new query abc_query.xml (note the pre�x of the query �lename) into Figure
12a, two symbolic links are required:

• dataset/fig12_ab/abc.xml→ abc.xml

• queries/fig12_ab/abc_query.xml→ abc_query.xml

To test other values of k , the default setup is changed as in the following example,
where k ∈ {2, 4, 8, 16, 32}:

1 ansible-playbook -K run_all.yaml --extra-vars= ’{␣"vary_k":␣"2␣4␣8␣16␣32"␣}’

a.4.2 Plots

We use pgfplots to generate our plots. We tailored the plot con�gurations towards
the speci�c results presented in our paper. To include additional columns or change the
x-/y-range, the pgfplots �les need to be changed accordingly. These �les are stored
in paper/figs/experiments/. However, it should still be possible to extract the raw
experimental results (using profile-all.py) for new datasets, queries, and k values.

a.5 time estimates

The reproducibility pipeline is not optimized towards minimizing the number of ex-
ecutions, i.e., some parameter con�gurations may be executed multiple times. This
is to simplify the structure of profile-all.py, which is organized in a �gure-based
manner. Based on our experiences, running all experiments with 2 simultaneously
executed processes and 1 run will take about 40 hours.

Our estimations assume that a single run is executed per experiment. For the
experiments in our paper, we use 5 runs per experiment and compute the average over
all runs. The runtimes can be reduced by executing processes in parallel. However,
increasing the number of parallel processes may a�ect the robustness of the results.
For example, to use 6 parallel processes, call the main Ansible �le as follows:

1 ansible-playbook -K run_all.yaml --extra-vars=’{␣"processes":␣6␣}’

B I B L I O G R A P H Y

[1] Wil van der Aalst. Process Mining: Data Science in Action. 2nd. Springer Publish-
ing Company, Incorporated, 2016. isbn: 3662498502.

[2] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. “Best Position Algorithms
for Top-k Queries”. In: Proceedings of the 33rd International Conference on Very
Large Data Bases. VLDB ’07. Vienna, Austria: VLDB Endowment, 2007, pp. 495–
506. isbn: 978-1-59593-649-3. url: http://dl.acm.org/citation.cfm?id=
1325851.1325909.

[3] Tatsuya Akutsu. “Tree Edit Distance Problems: Algorithms and Applications
to Bioinformatics”. In: IEICE Transactions on Information and Systems E93.D.2
(2010), pp. 208–218.

[4] Sattam Alsubaiee et al. “AsterixDB: A Scalable, Open Source BDMS”. In: Proc.
VLDB Endow. 7.14 (Oct. 2014), 1905–1916. issn: 2150-8097. doi: 10.14778/
2733085.2733096. url: https://doi.org/10.14778/2733085.2733096.

[5] Kiyoko F Aoki, Atsuko Yamaguchi, Yasushi Okuno, Tatsuya Akutsu, Nobuhisa
Ueda, Minoru Kanehisa, and Hiroshi Mamitsuka. “E�cient tree-matching meth-
ods for accurate carbohydrate database queries”. In: Genome Informatics 14
(2003), pp. 134–143.

[6] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. “E�cient Exact Set-
Similarity Joins”. In: Proceedings of the 32nd International Conference on Very
Large Data Bases. VLDB ’06. Seoul, Korea: VLDB Endowment, 2006, 918–929.

[7] James Archibald and Jean-Loup Baer. “Cache Coherence Protocols: Evaluation
Using a Multiprocessor Simulation Model”. In: ACM Trans. Comput. Syst. 4.4
(Sept. 1986), 273–298. issn: 0734-2071. doi: 10.1145/6513.6514. url: https:
//doi.org/10.1145/6513.6514.

[8] N. Augsten, D. Barbosa, M. Böhlen, and T. Palpanas. “TASM: Top-k Approxi-
mate Subtree Matching”. In: 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010). 2010, pp. 353–364. doi: 10.1109/ICDE.2010.5447905.

[9] N. Augsten, D. Barbosa, M. Bohlen, and T. Palpanas. “E�cient Top-k Approx-
imate Subtree Matching in Small Memory”. In: IEEE Transactions on Knowl-
edge and Data Engineering 23.8 (2011), pp. 1123–1137. issn: 1041-4347. doi:
10.1109/TKDE.2010.245.

[10] Nikolaus Augsten. “A Roadmap towards Declarative Similarity Queries”. In:
Proceedings of the 21st International Conference on Extending Database Technol-
ogy, EDBT 2018, Vienna, Austria, March 26-29, 2018. Ed. by Michael H. Böhlen,
Reinhard Pichler, Norman May, Erhard Rahm, Shan-Hung Wu, and Katja Hose.
OpenProceedings.org, 2018, pp. 509–512. doi: 10.5441/002/edbt.2018.59.
url: https://doi.org/10.5441/002/edbt.2018.59.

110

http://dl.acm.org/citation.cfm?id=1325851.1325909
http://dl.acm.org/citation.cfm?id=1325851.1325909
https://doi.org/10.14778/2733085.2733096
https://doi.org/10.14778/2733085.2733096
https://doi.org/10.14778/2733085.2733096
https://doi.org/10.1145/6513.6514
https://doi.org/10.1145/6513.6514
https://doi.org/10.1145/6513.6514
https://doi.org/10.1109/ICDE.2010.5447905
https://doi.org/10.1109/TKDE.2010.245
https://doi.org/10.5441/002/edbt.2018.59
https://doi.org/10.5441/002/edbt.2018.59

bibliography 111

[11] Nikolaus Augsten and Michael H. Böhlen. Similarity Joins in Relational Database
Systems. Synthesis Lectures on Data Management. Morgan & Claypool Publish-
ers, 2013. isbn: 9781627050289. doi: 10.2200/S00544ED1V01Y201310DTM038.
url: http://dx.doi.org/10.2200/S00544ED1V01Y201310DTM038.

[12] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. “Approximate Match-
ing of Hierarchical Data Using pq-grams”. In: Proceedings of the 31st Inter-
national Conference on Very Large Data Bases. VLDB ’05. Trondheim, Nor-
way: VLDB Endowment, 2005, pp. 301–312. isbn: 1-59593-154-6. url: http:
//dl.acm.org/citation.cfm?id=1083592.1083630.

[13] Nikolaus Augsten, Michael Böhlen, Curtis Dyreson, and Johann Gamper. “Win-
dowed pq-grams for approximate joins of data-centric XML”. In: The VLDB
Journal 21.4 (2012), pp. 463–488. issn: 0949-877X. doi: 10.1007/s00778-011-
0254-6. url: https://doi.org/10.1007/s00778-011-0254-6.

[14] Claude Barthels. “Scalable Query and Transaction Processing over High-Performance
Networks”. In: 2019.

[15] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. “Rack-
Scale In-Memory Join Processing Using RDMA”. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. SIGMOD ’15.
Melbourne, Victoria, Australia: ACM, 2015, pp. 1463–1475. isbn: 978-1-4503-
2758-9. doi: 10.1145/2723372.2750547. url: http://doi.acm.org/10.
1145/2723372.2750547.

[16] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. “Scaling Up All
Pairs Similarity Search”. In: Proceedings of the 16th International Conference
on World Wide Web. WWW ’07. Ban�, Alberta, Canada: ACM, 2007, pp. 131–
140. isbn: 978-1-59593-654-7. doi: 10.1145/1242572.1242591. url: http:
//doi.acm.org/10.1145/1242572.1242591.

[17] J. Bellando and R. Kothari. “Region-based modeling and tree edit distance as a
basis for gesture recognition”. In: Proceedings 10th International Conference on
Image Analysis and Processing. 1999, pp. 698–703. doi: 10.1109/ICIAP.1999.
797676.

[18] Philip Bille. “A survey on tree edit distance and related problems”. In: Theoretical
Computer Science 337.1 (2005), pp. 217 –239. issn: 0304-3975. doi: https://
doi.org/10.1016/j.tcs.2004.12.030. url: http://www.sciencedirect.
com/science/article/pii/S0304397505000174.

[19] G. Blin, A. Denise, S. Dulucq, C. Herrbach, and H. Touzet. “Alignments of
RNA Structures”. In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics 7.2 (2010), pp. 309–322. doi: 10.1109/TCBB.2008.28.

[20] Christian Böhm, Bernhard Braunmüller, Markus Breunig, and Hans-Peter
Kriegel. “High Performance Clustering Based on the Similarity Join”. In: Pro-
ceedings of the Ninth International Conference on Information and Knowledge
Management. CIKM ’00. McLean, Virginia, USA: Association for Computing

https://doi.org/10.2200/S00544ED1V01Y201310DTM038
http://dx.doi.org/10.2200/S00544ED1V01Y201310DTM038
http://dl.acm.org/citation.cfm?id=1083592.1083630
http://dl.acm.org/citation.cfm?id=1083592.1083630
https://doi.org/10.1007/s00778-011-0254-6
https://doi.org/10.1007/s00778-011-0254-6
https://doi.org/10.1007/s00778-011-0254-6
https://doi.org/10.1145/2723372.2750547
http://doi.acm.org/10.1145/2723372.2750547
http://doi.acm.org/10.1145/2723372.2750547
https://doi.org/10.1145/1242572.1242591
http://doi.acm.org/10.1145/1242572.1242591
http://doi.acm.org/10.1145/1242572.1242591
https://doi.org/10.1109/ICIAP.1999.797676
https://doi.org/10.1109/ICIAP.1999.797676
https://doi.org/https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/https://doi.org/10.1016/j.tcs.2004.12.030
http://www.sciencedirect.com/science/article/pii/S0304397505000174
http://www.sciencedirect.com/science/article/pii/S0304397505000174
https://doi.org/10.1109/TCBB.2008.28

112 bibliography

Machinery, 2000, 298–305. isbn: 1581133200. doi: 10.1145/354756.354832.
url: https://doi.org/10.1145/354756.354832.

[21] Christian Böhm, Robert Noll, Claudia Plant, and Bianca Wackersreuther. “Density-
Based Clustering Using Graphics Processors”. In: Proceedings of the 18th ACM
Conference on Information and Knowledge Management. CIKM ’09. Hong Kong,
China: Association for Computing Machinery, 2009, 661–670. isbn: 9781605585123.
doi: 10.1145/1645953.1646038. url: https://doi.org/10.1145/1645953.
1646038.

[22] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. “Trace Clustering
Based on Conserved Patterns: Towards Achieving Better Process Models”. In:
Business Process Management Workshops. Ed. by Stefanie Rinderle-Ma, Shazia
Sadiq, and Frank Leymann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 170–181. isbn: 978-3-642-12186-9.

[23] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. “Spatio-Textual Similarity
Joins”. In: Proc. of the VLDB Endowment 6.1 (Nov. 2012), 1–12.

[24] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC
8259. Dec. 2017. doi: 10.17487/RFC8259. url: https://rfc-editor.org/
rfc/rfc8259.txt.

[25] S. Brecheisen, H. . Kriegel, and M. Pfei�e. “E�cient Density-Based Clustering
of Complex Objects”. In: Fourth IEEE International Conference on Data Mining
(ICDM’04). 2004, pp. 43–50.

[26] Pável Calado, Melanie Herschel, and Luís Leitão. “An Overview of XML Du-
plicate Detection Algorithms”. In: Soft Computing in XML Data Management -
Intelligent Systems from Decision Making to Data Mining, Web Intelligence and
Computer Vision. Vol. 255. Studies in Fuzziness and Soft Computing. Springer,
2010, pp. 193–224. isbn: 978-3-642-14009-9. doi: 10.1007/978-3-642-14010-
5_8.

[27] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. “Better bitmap
performance with Roaring bitmaps”. In: Software: Practice and Experience 46.5
(2015), 709–719. issn: 0038-0644. doi: 10.1002/spe.2325. url: http://dx.
doi.org/10.1002/spe.2325.

[28] Samy Chambi, Daniel Lemire, Robert Godin, Kamel Boukhalfa, Charles R. Allen,
and Fangjin Yang. “Optimizing Druid with Roaring Bitmaps”. In: Proceedings of
the 20th International Database Engineering & Applications Symposium. IDEAS
’16. Montreal, QC, Canada: Association for Computing Machinery, 2016, 77–86.
isbn: 9781450341189. doi: 10.1145/2938503.2938515. url: https://doi.
org/10.1145/2938503.2938515.

[29] S. Chaudhuri, V. Ganti, and R. Kaushik. “A Primitive Operator for Similarity
Joins in Data Cleaning”. In: 22nd International Conference on Data Engineering
(ICDE’06). 2006, pp. 5–5.

https://doi.org/10.1145/354756.354832
https://doi.org/10.1145/354756.354832
https://doi.org/10.1145/1645953.1646038
https://doi.org/10.1145/1645953.1646038
https://doi.org/10.1145/1645953.1646038
https://doi.org/10.17487/RFC8259
https://rfc-editor.org/rfc/rfc8259.txt
https://rfc-editor.org/rfc/rfc8259.txt
https://doi.org/10.1007/978-3-642-14010-5_8
https://doi.org/10.1007/978-3-642-14010-5_8
https://doi.org/10.1002/spe.2325
http://dx.doi.org/10.1002/spe.2325
http://dx.doi.org/10.1002/spe.2325
https://doi.org/10.1145/2938503.2938515
https://doi.org/10.1145/2938503.2938515
https://doi.org/10.1145/2938503.2938515

bibliography 113

[30] S. Cohen and N. Or. “A General Algorithm for Subtree Similarity-Search”. In:
2014 IEEE 30th International Conference on Data Engineering. 2014, pp. 928–939.
doi: 10.1109/ICDE.2014.6816712.

[31] Sara Cohen. “Indexing for Subtree Similarity-Search Using Edit Distance”. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’13. New York, New York, USA: ACM, 2013, pp. 49–60. isbn:
978-1-4503-2037-5. doi: 10.1145/2463676.2463716. url: http://doi.acm.
org/10.1145/2463676.2463716.

[32] I. Cordova and T. Moh. “DBSCAN on Resilient Distributed Datasets”. In: 2015
International Conference on High Performance Computing Simulation (HPCS).
2015, pp. 531–540.

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. In-
troduction to Algorithms, Third Edition. 3rd. The MIT Press, 2009. isbn: 0262033844.

[34] B. Dai and I. Lin. “E�cient Map/Reduce-Based DBSCAN Algorithm with Op-
timized Data Partition”. In: 2012 IEEE Fifth International Conference on Cloud
Computing. 2012, pp. 59–66.

[35] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. “An
optimal decomposition algorithm for tree edit distance”. In: ACM Transactions
on Algorithms 6.1 (2009).

[36] Dong Deng, Yufei Tao, and Guoliang Li. “Overlap Set Similarity Joins with
Theoretical Guarantees”. In: Proceedings of the 2018 International Conference
on Management of Data. SIGMOD ’18. Houston, TX, USA: Association for
Computing Machinery, 2018, 905–920. isbn: 9781450347037. doi: 10.1145/
3183713.3183748. url: https://doi.org/10.1145/3183713.3183748.

[37] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. “An E�cient Partition
Based Method for Exact Set Similarity Joins”. In: Proc. VLDB Endow. 9.4 (Dec.
2015), pp. 360–371. issn: 2150-8097. doi: 10.14778/2856318.2856330. url:
http://dx.doi.org/10.14778/2856318.2856330.

[38] Lee R. Dice. “Measures of the Amount of Ecologic Association Between Species”.
In: Ecology 26.3 (1945), pp. 297–302. doi: https://doi.org/10.2307/1932409.
eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.
2307/1932409. url: https://esajournals.onlinelibrary.wiley.com/
doi/abs/10.2307/1932409.

[39] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
7th. Pearson, 2015. isbn: 0133970779.

[40] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. “A Density-
based Algorithm for Discovering Clusters a Density-based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise”. In: Proceedings of
the Second International Conference on Knowledge Discovery and Data Min-
ing. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226–231. url: http:
//dl.acm.org/citation.cfm?id=3001460.3001507.

https://doi.org/10.1109/ICDE.2014.6816712
https://doi.org/10.1145/2463676.2463716
http://doi.acm.org/10.1145/2463676.2463716
http://doi.acm.org/10.1145/2463676.2463716
https://doi.org/10.1145/3183713.3183748
https://doi.org/10.1145/3183713.3183748
https://doi.org/10.1145/3183713.3183748
https://doi.org/10.14778/2856318.2856330
http://dx.doi.org/10.14778/2856318.2856330
https://doi.org/https://doi.org/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1932409
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507

114 bibliography

[41] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and Xiaowei
Xu. “Incremental Clustering for Mining in a Data Warehousing Environment”.
In: Proceedings of the 24rd International Conference on Very Large Data Bases.
VLDB ’98. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998,
323–333. isbn: 1558605665.

[42] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal Aggregation Algorithms
for Middleware”. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. PODS ’01. Santa Barbara, Califor-
nia, USA: ACM, 2001, pp. 102–113. isbn: 1-58113-361-8. doi: 10.1145/375551.
375567. url: http://doi.acm.org/10.1145/375551.375567.

[43] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal Aggregation Algorithms
for Middleware”. In: J. Comput. Syst. Sci. 66.4 (June 2003), pp. 614–656. issn:
0022-0000. doi: 10.1016/S0022-0000(03)00026-6. url: http://dx.doi.
org/10.1016/S0022-0000(03)00026-6.

[44] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. “Fine-grained and Accurate Source Code Di�erencing”. In: Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering. ASE ’14. Vasteras, Sweden: ACM, 2014, pp. 313–324. isbn: 978-1-
4503-3013-8. doi: 10.1145/2642937.2642982. url: http://doi.acm.org/10.
1145/2642937.2642982.

[45] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-Christoph
Freytag. “Set Similarity Joins on Mapreduce: An Experimental Survey”. In: Proc.
VLDB Endow. 11.10 (June 2018), pp. 1110–1122. issn: 2150-8097. doi: 10.14778/
3231751.3231760. url: https://doi.org/10.14778/3231751.3231760.

[46] Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Franz Färber, and
Norman May. “DeltaNI: An E�cient Labeling Scheme for Versioned Hierarchi-
cal Data”. In: Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’13. New York, New York, USA: ACM, 2013,
pp. 905–916. isbn: 978-1-4503-2037-5. doi: 10.1145/2463676.2465329. url:
http://doi.acm.org/10.1145/2463676.2465329.

[47] Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Norman May, and
Franz Faerber. “Indexing Highly Dynamic Hierarchical Data”. In: Proc. VLDB
Endow. 8.10 (June 2015), 986–997. issn: 2150-8097. doi: 10.14778/2794367.
2794369. url: https://doi.org/10.14778/2794367.2794369.

[48] Junhao Gan and Yufei Tao. “DBSCAN Revisited: Mis-Claim, Un-Fixability, and
Approximation”. In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’15. Melbourne, Victoria, Australia:
Association for Computing Machinery, 2015, 519–530. isbn: 9781450327589.
doi: 10.1145/2723372.2737792. url: https://doi.org/10.1145/2723372.
2737792.

https://doi.org/10.1145/375551.375567
https://doi.org/10.1145/375551.375567
http://doi.acm.org/10.1145/375551.375567
https://doi.org/10.1016/S0022-0000(03)00026-6
http://dx.doi.org/10.1016/S0022-0000(03)00026-6
http://dx.doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.14778/3231751.3231760
https://doi.org/10.14778/3231751.3231760
https://doi.org/10.14778/3231751.3231760
https://doi.org/10.1145/2463676.2465329
http://doi.acm.org/10.1145/2463676.2465329
https://doi.org/10.14778/2794367.2794369
https://doi.org/10.14778/2794367.2794369
https://doi.org/10.14778/2794367.2794369
https://doi.org/10.1145/2723372.2737792
https://doi.org/10.1145/2723372.2737792
https://doi.org/10.1145/2723372.2737792

bibliography 115

[49] Junhao Gan and Yufei Tao. “Dynamic Density Based Clustering”. In: Proceedings
of the 2017 ACM International Conference on Management of Data. SIGMOD ’17.
Chicago, Illinois, USA: ACM, 2017, pp. 1493–1507. isbn: 978-1-4503-4197-4. doi:
10.1145/3035918.3064050. url: http://doi.acm.org/10.1145/3035918.
3064050.

[50] Markus Götz, Christian Bodenstein, and Morris Riedel. “HPDBSCAN: Highly
Parallel DBSCAN”. In: Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments. MLHPC ’15. Austin, Texas: Association
for Computing Machinery, 2015. isbn: 9781450340069. doi: 10.1145/2834892.
2834894. url: https://doi.org/10.1145/2834892.2834894.

[51] Torsten Grust. “Accelerating XPath Location Steps”. In: Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data. SIGMOD ’02.
Madison, Wisconsin: ACM, 2002, pp. 109–120. isbn: 1-58113-497-5. doi: 10.
1145/564691.564705. url: http://doi.acm.org/10.1145/564691.564705.

[52] Richard W. Hamming. “Error detecting and error correcting codes”. In: The
Bell System Technical Journal 29.2 (1950), pp. 147–160. doi: 10.1002/j.1538-
7305.1950.tb00463.x.

[53] D. Han, A. Agrawal, W. Liao, and A. Choudhary. “A Novel Scalable DBSCAN
Algorithm with Spark”. In: 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 2016, pp. 1393–1402.

[54] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan. “MR-DBSCAN: An
E�cient Parallel Density-Based Clustering Algorithm Using MapReduce”. In:
2011 IEEE 17th International Conference on Parallel and Distributed Systems. 2011,
pp. 473–480.

[55] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan.
“MR-DBSCAN: A Scalable MapReduce-Based DBSCAN Algorithm for Heavily
Skewed Data”. In: Front. Comput. Sci. 8.1 (Feb. 2014), 83–99. issn: 2095-2228. doi:
10.1007/s11704-013-3158-3. url: https://doi.org/10.1007/s11704-
013-3158-3.

[56] Claire Herrbach, Alain Denise, and Serge Dulucq. “Average complexity of the
Jiang-Wang-Zhang pairwise tree alignment algorithm and of a RNA secondary
structure alignment algorithm”. In: Theoretical Computer Science 411.26 (2010),
pp. 2423 –2432. issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.
2010.01.014. url: http://www.sciencedirect.com/science/article/
pii/S0304397510000393.

[57] Holger Heumann and Gabriel Wittum. “The tree-edit-distance, a measure for
quantifying neuronal morphology”. In: Neuroinformatics 7.3 (2009), pp. 179–190.

[58] B.F.A. Hompes, J.C.A.M. Buijs, W.M.P. van der Aalst, P.M. Dixit, and J. Buurman.
“Discovering Deviating Cases and Process Variants Using Trace Clustering”.
English. In: 27th Benelux Conference on Arti�cial Intelligence, 5-6 November 2015,
Hasselt, Belgium. 27th Benelux Conference on Arti�cial Intelligence (BNAIC

https://doi.org/10.1145/3035918.3064050
http://doi.acm.org/10.1145/3035918.3064050
http://doi.acm.org/10.1145/3035918.3064050
https://doi.org/10.1145/2834892.2834894
https://doi.org/10.1145/2834892.2834894
https://doi.org/10.1145/2834892.2834894
https://doi.org/10.1145/564691.564705
https://doi.org/10.1145/564691.564705
http://doi.acm.org/10.1145/564691.564705
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1007/s11704-013-3158-3
https://doi.org/10.1007/s11704-013-3158-3
https://doi.org/10.1007/s11704-013-3158-3
https://doi.org/https://doi.org/10.1016/j.tcs.2010.01.014
https://doi.org/https://doi.org/10.1016/j.tcs.2010.01.014
http://www.sciencedirect.com/science/article/pii/S0304397510000393
http://www.sciencedirect.com/science/article/pii/S0304397510000393

116 bibliography

2015), BNAIC 2015 ; Conference date: 05-11-2015 Through 06-11-2015. 2015.
url: http://bnaic2015.org/.

[59] T. Hütter, M. Pawlik, R. Löschinger, and N. Augsten. “E�ective Filters and Linear
Time Veri�cation for Tree Similarity Joins”. In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE). 2019, pp. 854–865. doi: 10.1109/ICDE.
2019.00081.

[60] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. “A Survey of Top-
k Query Processing Techniques in Relational Database Systems”. In: ACM
Comput. Surv. 40.4 (2008), 11:1–11:58. doi: 10.1145/1391729.1391730. url:
http://doi.acm.org/10.1145/1391729.1391730.

[61] Paul Jaccard. Distribution de la �ore alpine dans le bassin des Dranses et dans
quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles:
Société Vaudoise des Sciences Naturelles. Rouge, 1901.

[62] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM,
Disk. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. isbn:
0123797519.

[63] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfei�e. “Scalable Density-Based
Distributed Clustering”. In: Knowledge Discovery in Databases: PKDD 2004.
Ed. by Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino
Pedreschi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 231–244.
isbn: 978-3-540-30116-5.

[64] Heinrich Jiang, Jennifer Jang, and Jakub Lacki. Faster DBSCAN via subsampled
similarity queries. 2020. arXiv: 2006.06743 [cs.LG].

[65] Mohamed Kashkoush and Hoda ElMaraghy. “Matching Bills of Materials Using
Tree Reconciliation”. In: Procedia CIRP 7 (2013). Forty Sixth CIRP Conference on
Manufacturing Systems 2013, pp. 169 –174. issn: 2212-8271. doi: https://doi.
org/10.1016/j.procir.2013.05.029. url: http://www.sciencedirect.
com/science/article/pii/S2212827113002369.

[66] Raghav Kaushik, Rajasekar Krishnamurthy, Je�rey F. Naughton, and Raghu
Ramakrishnan. “On the Integration of Structure Indexes and Inverted Lists”. In:
Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’04. Paris, France: ACM, 2004, pp. 779–790. isbn: 1-58113-859-
8. doi: 10.1145/1007568.1007656. url: http://doi.acm.org/10.1145/
1007568.1007656.

[67] Yeonjung Kim, Jeahyun Park, Taehwan Kim, and Joongmin Choi. “Web infor-
mation extraction by HTML tree edit distance matching”. In: 2007 International
Conference on Convergence Information Technology (ICCIT 2007). IEEE. 2007,
pp. 2455–2460.

[68] Philip Klein, Srikanta Tirthapura, Daniel Sharvit, and Ben Kimia. “A tree-edit-
distance algorithm for comparing simple, closed shapes”. In: Proceedings of the
eleventh annual ACM-SIAM symposium on Discrete algorithms. 2000, pp. 696–
704.

http://bnaic2015.org/
https://doi.org/10.1109/ICDE.2019.00081
https://doi.org/10.1109/ICDE.2019.00081
https://doi.org/10.1145/1391729.1391730
http://doi.acm.org/10.1145/1391729.1391730
https://arxiv.org/abs/2006.06743
https://doi.org/https://doi.org/10.1016/j.procir.2013.05.029
https://doi.org/https://doi.org/10.1016/j.procir.2013.05.029
http://www.sciencedirect.com/science/article/pii/S2212827113002369
http://www.sciencedirect.com/science/article/pii/S2212827113002369
https://doi.org/10.1145/1007568.1007656
http://doi.acm.org/10.1145/1007568.1007656
http://doi.acm.org/10.1145/1007568.1007656

bibliography 117

[69] Daniel Kocher and Nikolaus Augsten. “A Scalable Index for Top-k Subtree
Similarity Queries”. In: Proceedings of the 2019 International Conference on
Management of Data. SIGMOD ’19. Amsterdam, Netherlands: Association for
Computing Machinery, 2019, 1624–1641. isbn: 9781450356435. doi: 10.1145/
3299869.3319892. url: https://doi.org/10.1145/3299869.3319892.

[70] Daniel Kocher, Nikolaus Augsten, and Willi Mann. “Scaling Density-Based
Clustering to Large Collections of Sets”. In: Proceedings of the 24rd International
Conference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, March
23 - 26, 2021. OpenProceedings.org, 2021. isbn: 978-3-89318-084-4.

[71] Marzena Kryszkiewicz and Piotr Lasek. “TI-DBSCAN: Clustering with DBSCAN
by Means of the Triangle Inequality”. In: Rough Sets and Current Trends in
Computing. Ed. by Marcin Szczuka, Marzena Kryszkiewicz, Sheela Ramanna,
Richard Jensen, and Qinghua Hu. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 60–69. isbn: 978-3-642-13529-3.

[72] K. Mahesh Kumar and A. Rama Mohan Reddy. “A fast DBSCAN clustering
algorithm by accelerating neighbor searching using Groups method”. In: Pattern
Recognition 58 (2016), pp. 39 –48. issn: 0031-3203. doi: https://doi.org/
10.1016/j.patcog.2016.03.008. url: http://www.sciencedirect.com/
science/article/pii/S0031320316001035.

[73] Harald Lang, Alexander Beischl, Viktor Leis, Peter Boncz, Thomas Neumann,
and Alfons Kemper. “Tree-Encoded Bitmaps”. In: Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’20. Port-
land, OR, USA: Association for Computing Machinery, 2020, 937–967. isbn:
9781450367356. doi: 10.1145/3318464.3380588. url: https://doi.org/10.
1145/3318464.3380588.

[74] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. “Consistently faster and
smaller compressed bitmaps with Roaring”. In: Software: Practice and Experience
46.11 (2016), pp. 1547–1569. doi: https://doi.org/10.1002/spe.2402.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2402.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2402.

[75] I. Vladimir Levenshtein. “Binary codes capable of correcting spurious insertions
and deletions of ones”. In: Problems of Information Transmission 1 (1965), pp. 8–
17.

[76] Fei Li, Hongzhi Wang, Jianzhong Li, and Hong Gao. “A Survey on Tree Edit
Distance Lower Bound Estimation Techniques for Similarity Join on XML Data”.
In: SIGMOD Rec. 42.4 (Feb. 2014), pp. 29–39. issn: 0163-5808. doi: 10.1145/
2590989.2590994. url: http://doi.acm.org/10.1145/2590989.2590994.

[77] Zhiwei Lin, Hui Wang, and Sally McClean. “Measuring Tree Similarity for Nat-
ural Language Processing Based Information Retrieval”. In: Natural Language
Processing and Information Systems. Ed. by Christina J. Hopfe, Yacine Rezgui,
Elisabeth Métais, Alun Preece, and Haijiang Li. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 13–23. isbn: 978-3-642-13881-2.

https://doi.org/10.1145/3299869.3319892
https://doi.org/10.1145/3299869.3319892
https://doi.org/10.1145/3299869.3319892
https://doi.org/https://doi.org/10.1016/j.patcog.2016.03.008
https://doi.org/https://doi.org/10.1016/j.patcog.2016.03.008
http://www.sciencedirect.com/science/article/pii/S0031320316001035
http://www.sciencedirect.com/science/article/pii/S0031320316001035
https://doi.org/10.1145/3318464.3380588
https://doi.org/10.1145/3318464.3380588
https://doi.org/10.1145/3318464.3380588
https://doi.org/https://doi.org/10.1002/spe.2402
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2402
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2402
https://doi.org/10.1145/2590989.2590994
https://doi.org/10.1145/2590989.2590994
http://doi.acm.org/10.1145/2590989.2590994

118 bibliography

[78] A. X. Liu, K. Shen, and E. Torng. “Large scale Hamming distance query pro-
cessing”. In: 2011 IEEE 27th International Conference on Data Engineering. 2011,
pp. 553–564. doi: 10.1109/ICDE.2011.5767831.

[79] Yinghua Lv, Tinghuai Ma, Meili Tang, Jie Cao, Yuan Tian, Abdullah Al-Dhelaan,
and Mznah Al-Rodhaan. “An e�cient and scalable density-based clustering
algorithm for datasets with complex structures”. In: Neurocomputing 171 (2016),
pp. 9 –22. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2015.
05.109. url: http://www.sciencedirect.com/science/article/pii/
S0925231215008073.

[80] Willi Mann and Nikolaus Augsten. “PEL: Position-Enhanced Length Filter for
Set Similarity Joins”. In: Proceedings of the 26th GI-Workshop Grundlagen von
Datenbanken, Bozen-Bolzano, Italy, October 21st to 24th, 2014. Ed. by Friederike
Klan, Günther Specht, and Hans Gamper. Vol. 1313. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2014, pp. 89–94. url: http://ceur-ws.org/Vol-
1313/paper_16.pdf.

[81] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. “An Empirical Evaluation
of Set Similarity Join Techniques”. In: Proc. VLDB Endow. 9.9 (May 2016), pp. 636–
647. issn: 2150-8097. doi: 10.14778/2947618.2947620. url: http://dx.doi.
org/10.14778/2947618.2947620.

[82] Willi Mann, Nikolaus Augsten, and Christian S. Jensen. “SWOOP: Top-k Similar-
ity Joins over Set Streams”. In: CoRR abs/1711.02476 (2017). arXiv: 1711.02476.
url: http://arxiv.org/abs/1711.02476.

[83] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. “Detectives: De-
tecting Coalition Hit In�ation Attacks in Advertising Networks Streams”. In:
Proceedings of the 16th International Conference on World Wide Web. WWW ’07.
Ban�, Alberta, Canada: Association for Computing Machinery, 2007, 241–250.
isbn: 9781595936547. doi: 10.1145/1242572.1242606. url: https://doi.
org/10.1145/1242572.1242606.

[84] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and
Bobby Bhattacharjee. “Measurement and Analysis of Online Social Networks”.
In: Proc. of the ACM Int. Conf. on Internet Measurement (SIGCOMM). 2007, 29–42.

[85] Christopher Mitchell, Yifeng Geng, and Jinyang Li. “Using One-Sided RDMA
Reads to Build a Fast, CPU-E�cient Key-Value Store”. In: 2013 USENIX Annual
Technical Conference (USENIX ATC 13). San Jose, CA: USENIX Association, June
2013, pp. 103–114. isbn: 978-1-931971-01-0. url: https://www.usenix.org/
conference/atc13/technical-sessions/presentation/mitchell.

[86] Rasmus Pagh. “Locality-sensitive Hashing without False Negatives”. In: Proceed-
ings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1–9.
doi: 10.1137/1.9781611974331.ch1. eprint: https://epubs.siam.org/
doi/pdf/10.1137/1.9781611974331.ch1. url: https://epubs.siam.org/
doi/abs/10.1137/1.9781611974331.ch1.

https://doi.org/10.1109/ICDE.2011.5767831
https://doi.org/https://doi.org/10.1016/j.neucom.2015.05.109
https://doi.org/https://doi.org/10.1016/j.neucom.2015.05.109
http://www.sciencedirect.com/science/article/pii/S0925231215008073
http://www.sciencedirect.com/science/article/pii/S0925231215008073
http://ceur-ws.org/Vol-1313/paper_16.pdf
http://ceur-ws.org/Vol-1313/paper_16.pdf
https://doi.org/10.14778/2947618.2947620
http://dx.doi.org/10.14778/2947618.2947620
http://dx.doi.org/10.14778/2947618.2947620
https://arxiv.org/abs/1711.02476
http://arxiv.org/abs/1711.02476
https://doi.org/10.1145/1242572.1242606
https://doi.org/10.1145/1242572.1242606
https://doi.org/10.1145/1242572.1242606
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://doi.org/10.1137/1.9781611974331.ch1
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974331.ch1
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974331.ch1
https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch1
https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch1

bibliography 119

[87] Rasmus Pagh. “CoveringLSH: Locality-Sensitive Hashing without False Neg-
atives”. In: ACM Trans. Algorithms 14.3 (June 2018). issn: 1549-6325. doi: 10.
1145/3155300. url: https://doi.org/10.1145/3155300.

[88] Jean Paoli, François Yergeau, Michael Sperberg-McQueen, Tim Bray, and Eve
Maler. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommen-
dation. https://www.w3.org/TR/2008/REC-xml-20081126/. W3C, Nov. 2008.

[89] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. Liao, F. Manne, and A. Choudhary.
“A new scalable parallel DBSCAN algorithm using the disjoint-set data struc-
ture”. In: SC ’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 2012, pp. 1–11.

[90] M. M. A. Patwary, N. Satish, N. Sundaram, F. Manne, S. Habib, and P. Dubey.
“Pardicle: Parallel Approximate Density-Based Clustering”. In: SC ’14: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 2014, pp. 560–571.

[91] Mateusz Pawlik and Nikolaus Augsten. “Tree edit distance: Robust and memory-
e�cient”. In: Information Systems 56 (2016), pp. 157 –173. issn: 0306-4379. doi:
https://doi.org/10.1016/j.is.2015.08.004. url: http://www.
sciencedirect.com/science/article/pii/S0306437915001611.

[92] Mateusz Pawlik, Thomas Hütter, Daniel Kocher, Willi Mann, and Nikolaus
Augsten. “A Link is not Enough - Reproducibility of Data”. In: Datenbank-
Spektrum 19.2 (2019), pp. 107–115. doi: 10.1007/s13222-019-00317-8. url:
https://doi.org/10.1007/s13222-019-00317-8.

[93] Ninh Pham and Rasmus Pagh. “Scalability and Total Recall with Fast Cov-
eringLSH”. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. CIKM ’16. Indianapolis, Indiana, USA:
Association for Computing Machinery, 2016, 1109–1118. isbn: 9781450340731.
doi: 10.1145/2983323.2983742. url: https://doi.org/10.1145/2983323.
2983742.

[94] Martin Pichl, Eva Zangerle, and Günther Specht. “Combining Spotify and
Twitter Data for Generating a Recent and Public Dataset for Music Recommen-
dation”. In: Proc. of the Workshop Grundlagen von Datenbanken. Vol. 1313. CEUR
Workshop Proceedings. 2014, pp. 35–40.

[95] Sven Puhlmann, Melanie Weis, and Felix Naumann. “XML Duplicate Detec-
tion Using Sorted Neighborhoods”. In: International Conference on Extending
Database Technology (EDBT). Vol. 3896. Lecture Notes in Computer Science.
Springer, 2006, pp. 773–791. doi: 10.1007/11687238_46.

[96] Jianbin Qin and Chuan Xiao. “Pigeonring: A Principle for Faster Thresholded
Similarity Search”. In: Proc. VLDB Endow. 12.1 (Sept. 2018), 28–42. issn: 2150-
8097. doi: 10.14778/3275536.3275539. url: https://doi.org/10.14778/
3275536.3275539.

https://doi.org/10.1145/3155300
https://doi.org/10.1145/3155300
https://doi.org/10.1145/3155300
https://doi.org/https://doi.org/10.1016/j.is.2015.08.004
http://www.sciencedirect.com/science/article/pii/S0306437915001611
http://www.sciencedirect.com/science/article/pii/S0306437915001611
https://doi.org/10.1007/s13222-019-00317-8
https://doi.org/10.1007/s13222-019-00317-8
https://doi.org/10.1145/2983323.2983742
https://doi.org/10.1145/2983323.2983742
https://doi.org/10.1145/2983323.2983742
https://doi.org/10.1007/11687238_46
https://doi.org/10.14778/3275536.3275539
https://doi.org/10.14778/3275536.3275539
https://doi.org/10.14778/3275536.3275539

120 bibliography

[97] Davi De Castro Reis, Paulo Braz Golgher, Altigran Soares Silva, and AlbertoF
Laender. “Automatic web news extraction using tree edit distance”. In: Pro-
ceedings of the 13th international conference on World Wide Web. 2004, pp. 502–
511.

[98] Leonardo Andrade Ribeiro and Theo Härder. “Generalizing Pre�x Filtering to
Improve Set Similarity Joins”. In: Inf. Syst. 36.1 (Mar. 2011), pp. 62–78. issn:
0306-4379. doi: 10.1016/j.is.2010.07.003. url: http://dx.doi.org/10.
1016/j.is.2010.07.003.

[99] A. Sarma, P. Goyal, S. Kumari, A. Wani, J. S. Challa, S. Islam, and N. Goyal.
“µDBSCAN: An Exact Scalable DBSCAN Algorithm for Big Data Exploiting
Spatial Locality”. In: 2019 IEEE International Conference on Cluster Computing
(CLUSTER). 2019, pp. 1–11.

[100] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.
“DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN”.
In: ACM Trans. Database Syst. 42.3 (July 2017). issn: 0362-5915. doi: 10.1145/
3068335. url: https://doi.org/10.1145/3068335.

[101] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts. 6th Edition. McGraw-Hill Higher Education, 2011. isbn: 978-0-07-
352332-3. url: https://www.db-book.com/db6/index.html.

[102] Simian - Similarity Analyzer | Duplicate Code Detection for the Enterprise. https:
//www.harukizaemon.com/simian/. Accessed: 2019-02-11, 02:29 PM.

[103] R. Singhal. “Inside Intel® Core microarchitecture (Nehalem)”. In: 2008 IEEE
Hot Chips 20 Symposium (HCS). 2008, pp. 1–25. doi: 10.1109/HOTCHIPS.2008.
7476555.

[104] Hwanjun Song and Jae-Gil Lee. “RP-DBSCAN: A Superfast Parallel DBSCAN Al-
gorithm Based on Random Partitioning”. In: Proceedings of the 2018 International
Conference on Management of Data. SIGMOD ’18. Houston, TX, USA: ACM,
2018, pp. 1173–1187. isbn: 978-1-4503-4703-7. doi: 10.1145/3183713.3196887.
url: http://doi.acm.org/10.1145/3183713.3196887.

[105] Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. “Trace
Clustering in Process Mining”. In: Business Process Management Workshops.
Ed. by Danilo Ardagna, Massimo Mecella, and Jian Yang. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 109–120. isbn: 978-3-642-00328-8.

[106] Volker Springel et al. “Simulations of the formation, evolution and clustering of
galaxies and quasars”. In: Nature 435.7042 (2005), pp. 629–636. issn: 1476-4687.
doi: 10.1038/nature03597. url: https://doi.org/10.1038/nature03597.

[107] P. Stenström. “A Survey of Cache Coherence Schemes for Multiprocessors”. In:
Computer 23.6 (1990), pp. 12–24. doi: 10.1109/2.55497.

[108] Ji Sun, Zeyuan Shang, Guoliang Li, Dong Deng, and Zhifeng Bao. “Balance-
aware Distributed String Similarity-based Query Processing System”. In: Proc.
VLDB Endow. 12.9 (May 2019), pp. 961–974. issn: 2150-8097. doi: 10.14778/
3329772.3329774. url: https://doi.org/10.14778/3329772.3329774.

https://doi.org/10.1016/j.is.2010.07.003
http://dx.doi.org/10.1016/j.is.2010.07.003
http://dx.doi.org/10.1016/j.is.2010.07.003
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://www.db-book.com/db6/index.html
https://www.harukizaemon.com/simian/
https://www.harukizaemon.com/simian/
https://doi.org/10.1109/HOTCHIPS.2008.7476555
https://doi.org/10.1109/HOTCHIPS.2008.7476555
https://doi.org/10.1145/3183713.3196887
http://doi.acm.org/10.1145/3183713.3196887
https://doi.org/10.1038/nature03597
https://doi.org/10.1038/nature03597
https://doi.org/10.1109/2.55497
https://doi.org/10.14778/3329772.3329774
https://doi.org/10.14778/3329772.3329774
https://doi.org/10.14778/3329772.3329774

bibliography 121

[109] Kuo-Chung Tai. “The Tree-to-Tree Correction Problem”. In: J. ACM 26.3 (July
1979), 422–433. issn: 0004-5411. doi: 10.1145/322139.322143. url: https:
//doi.org/10.1145/322139.322143.

[110] MingJie Tang, Yongyang Yu, Walid G. Aref, Qutaibah M. Malluhi, and Mourad
Ouzzani. “E�cient Processing of Hamming-Distance-Based Similarity-Search
Queries Over MapReduce”. In: Proceedings of the 18th International Conference on
Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015.
Ed. by Gustavo Alonso, Floris Geerts, Lucian Popa, Pablo Barceló, Jens Teubner,
Martín Ugarte, Jan Van den Bussche, and Jan Paredaens. OpenProceedings.org,
2015, pp. 361–372. doi: 10.5441/002/edbt.2015.32. url: https://doi.org/
10.5441/002/edbt.2015.32.

[111] Yu Tang, Yilun Cai, and Nikos Mamoulis. “Scaling Similarity Joins over Tree-
structured Data”. In: Proc. VLDB Endow. 8.11 (July 2015), pp. 1130–1141. issn:
2150-8097. doi: 10.14778/2809974.2809976. url: http://dx.doi.org/10.
14778/2809974.2809976.

[112] Robert Endre Tarjan. “E�ciency of a Good But Not Linear Set Union Algorithm”.
In: J. ACM 22.2 (Apr. 1975), 215–225. issn: 0004-5411. doi: 10.1145/321879.
321884. url: https://doi.org/10.1145/321879.321884.

[113] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. “E�cient and Self-
tuning Incremental Query Expansion for Top-k Query Processing”. In: Pro-
ceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’05. Salvador, Brazil: ACM,
2005, pp. 242–249. isbn: 1-59593-034-5. doi: 10.1145/1076034.1076077. url:
http://doi.acm.org/10.1145/1076034.1076077.

[114] Martin Theobald, Jonathan Siddharth, and Andreas Paepcke. “SpotSigs: Robust
and E�cient near Duplicate Detection in Large Web Collections”. In: Proceed-
ings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’08. Singapore, Singapore: Asso-
ciation for Computing Machinery, 2008, 563–570. isbn: 9781605581644. doi:
10.1145/1390334.1390431. url: https://doi.org/10.1145/1390334.
1390431.

[115] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. “Top-k Query Evaluation
with Probabilistic Guarantees”. In: Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30. VLDB ’04. Toronto, Canada:
VLDB Endowment, 2004, pp. 648–659. isbn: 0-12-088469-0. url: http://dl.
acm.org/citation.cfm?id=1316689.1316746.

[116] Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf Schenkel, and Gerhard
Weikum. “TopX: e�cient and versatile top-k query processing for semistruc-
tured data”. In: The VLDB Journal 17.1 (2008), pp. 81–115. issn: 0949-877X. doi:
10.1007/s00778-007-0072-z. url: https://doi.org/10.1007/s00778-
007-0072-z.

https://doi.org/10.1145/322139.322143
https://doi.org/10.1145/322139.322143
https://doi.org/10.1145/322139.322143
https://doi.org/10.5441/002/edbt.2015.32
https://doi.org/10.5441/002/edbt.2015.32
https://doi.org/10.5441/002/edbt.2015.32
https://doi.org/10.14778/2809974.2809976
http://dx.doi.org/10.14778/2809974.2809976
http://dx.doi.org/10.14778/2809974.2809976
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/1076034.1076077
http://doi.acm.org/10.1145/1076034.1076077
https://doi.org/10.1145/1390334.1390431
https://doi.org/10.1145/1390334.1390431
https://doi.org/10.1145/1390334.1390431
http://dl.acm.org/citation.cfm?id=1316689.1316746
http://dl.acm.org/citation.cfm?id=1316689.1316746
https://doi.org/10.1007/s00778-007-0072-z
https://doi.org/10.1007/s00778-007-0072-z
https://doi.org/10.1007/s00778-007-0072-z

122 bibliography

[117] Esko Ukkonen. “Approximate string-matching with q-grams and maximal
matches”. In: Theoretical Computer Science 92.1 (1992), pp. 191–211. issn: 0304-
3975. doi: https://doi.org/10.1016/0304-3975(92)90143-4. url: https:
//www.sciencedirect.com/science/article/pii/0304397592901434.

[118] Rares Vernica, Michael J. Carey, and Chen Li. “E�cient Parallel Set-similarity
Joins Using MapReduce”. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’10. Indianapolis, Indiana, USA:
ACM, 2010, pp. 495–506. isbn: 978-1-4503-0032-2. doi: 10.1145/1807167.
1807222. url: http://doi.acm.org/10.1145/1807167.1807222.

[119] Márcio L. A. Vidal, Altigran S. da Silva, Edleno S. de Moura, and João M. B.
Cavalcanti. “Structure-driven Crawler Generation by Example”. In: Proceedings
of the 29th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval. SIGIR ’06. Seattle, Washington, USA: ACM,
2006, pp. 292–299. isbn: 1-59593-369-7. doi: 10.1145/1148170.1148223. url:
http://doi.acm.org/10.1145/1148170.1148223.

[120] P. Viswanath and V. Suresh Babu. “Rough-DBSCAN: A fast hybrid density
based clustering method for large data sets”. In: Pattern Recognition Letters 30.16
(2009), pp. 1477 –1488. issn: 0167-8655. doi: https://doi.org/10.1016/
j.patrec.2009.08.008. url: http://www.sciencedirect.com/science/
article/pii/S0167865509002153.

[121] Michael Voss, Rafael Asenjo, and James Reinders. Pro TBB: C++ Parallel Program-
ming with Threading Building Blocks. 1st. USA: Apress, 2019. isbn: 1484243978.

[122] Jiannan Wang, Guoliang Li, and Jianhua Feng. “Can We Beat the Pre�x Filtering?
An Adaptive Framework for Similarity Join and Search”. In: Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data. SIGMOD
’12. Scottsdale, Arizona, USA: Association for Computing Machinery, 2012,
85–96. isbn: 9781450312479. doi: 10.1145/2213836.2213847. url: https:
//doi.org/10.1145/2213836.2213847.

[123] Pei Wang, Chuan Xiao, Jianbin Qin, Wei Wang, Xiaoyang Zhang, and Yoshi-
haru Ishikawa. “Local Similarity Search for Unstructured Text”. In: Proceed-
ings of the 2016 International Conference on Management of Data. SIGMOD
’16. San Francisco, California, USA: Association for Computing Machinery,
2016, 1991–2005. isbn: 9781450335317. doi: 10.1145/2882903.2915211. url:
https://doi.org/10.1145/2882903.2915211.

[124] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. “Leveraging
Set Relations in Exact Set Similarity Join”. In: Proc. VLDB Endow. 10.9 (May
2017), pp. 925–936. issn: 2150-8097. doi: 10.14778/3099622.3099624. url:
https://doi.org/10.14778/3099622.3099624.

[125] Y. Wang, D. J. DeWitt, and J. . Cai. “X-Di�: an e�ective change detection algo-
rithm for XML documents”. In: Proceedings 19th International Conference on
Data Engineering. 2003, pp. 519–530. doi: 10.1109/ICDE.2003.1260818.

https://doi.org/https://doi.org/10.1016/0304-3975(92)90143-4
https://www.sciencedirect.com/science/article/pii/0304397592901434
https://www.sciencedirect.com/science/article/pii/0304397592901434
https://doi.org/10.1145/1807167.1807222
https://doi.org/10.1145/1807167.1807222
http://doi.acm.org/10.1145/1807167.1807222
https://doi.org/10.1145/1148170.1148223
http://doi.acm.org/10.1145/1148170.1148223
https://doi.org/https://doi.org/10.1016/j.patrec.2009.08.008
https://doi.org/https://doi.org/10.1016/j.patrec.2009.08.008
http://www.sciencedirect.com/science/article/pii/S0167865509002153
http://www.sciencedirect.com/science/article/pii/S0167865509002153
https://doi.org/10.1145/2213836.2213847
https://doi.org/10.1145/2213836.2213847
https://doi.org/10.1145/2213836.2213847
https://doi.org/10.1145/2882903.2915211
https://doi.org/10.1145/2882903.2915211
https://doi.org/10.14778/3099622.3099624
https://doi.org/10.14778/3099622.3099624
https://doi.org/10.1109/ICDE.2003.1260818

bibliography 123

[126] Yiqiu Wang, Yan Gu, and Julian Shun. “Theoretically-E�cient and Practical
Parallel DBSCAN”. In: Proceedings of the 2020 ACM SIGMOD International Con-
ference onManagement of Data. SIGMOD ’20. Portland, OR, USA: Association for
Computing Machinery, 2020, 2555–2571. isbn: 9781450367356. doi: 10.1145/
3318464.3380582. url: https://doi.org/10.1145/3318464.3380582.

[127] Anthony Williams. C++ Concurrency in Action. Vol. 2. Manning Publications,
2019.

[128] Y. Wu, J. Guo, and X. Zhang. “A Linear DBSCAN Algorithm Based on LSH”. In:
2007 International Conference on Machine Learning and Cybernetics. Vol. 5. 2007,
pp. 2608–2614.

[129] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. “Top-k Set Simi-
larity Joins”. In: Proceedings of the 2009 IEEE International Conference on Data
Engineering. ICDE ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 916–927. isbn: 978-0-7695-3545-6. doi: 10.1109/ICDE.2009.111. url:
http://dx.doi.org/10.1109/ICDE.2009.111.

[130] Chuan Xiao, Wei Wang, Xuemin Lin, Je�rey Xu Yu, and Guoren Wang. “E�cient
Similarity Joins for Near-Duplicate Detection”. In: ACM Trans. Database Syst.
36.3 (Aug. 2011). issn: 0362-5915. doi: 10.1145/2000824.2000825. url: https:
//doi.org/10.1145/2000824.2000825.

[131] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. “A Fast Parallel Clustering
Algorithm for Large Spatial Databases”. In: Data Min. Knowl. Discov. 3.3 (Sept.
1999), 263–290. issn: 1384-5810. doi: 10.1023/A:1009884809343. url: https:
//doi.org/10.1023/A:1009884809343.

[132] K. Yang, Y. Gao, R. Ma, L. Chen, S. Wu, and G. Chen. “DBSCAN-MS: Distributed
Density-Based Clustering in Metric Spaces”. In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE). 2019, pp. 1346–1357.

[133] Rui Yang, Panos Kalnis, and Anthony K. H. Tung. “Similarity Evaluation on
Tree-structured Data”. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’05. Baltimore, Maryland: ACM,
2005, pp. 754–765. isbn: 1-59593-060-4. doi: 10.1145/1066157.1066243. url:
http://doi.acm.org/10.1145/1066157.1066243.

[134] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. “The End of a
Myth: Distributed Transactions Can Scale”. In: Proc. VLDB Endow. 10.6 (Feb.
2017), pp. 685–696. issn: 2150-8097. doi: 10.14778/3055330.3055335. url:
https://doi.org/10.14778/3055330.3055335.

[135] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim Kraska. “Re-
thinking Database High Availability with RDMA Networks”. In: Proc. VLDB
Endow. 12.11 (July 2019), 1637–1650. issn: 2150-8097. doi: 10.14778/3342263.
3342639. url: https://doi.org/10.14778/3342263.3342639.

https://doi.org/10.1145/3318464.3380582
https://doi.org/10.1145/3318464.3380582
https://doi.org/10.1145/3318464.3380582
https://doi.org/10.1109/ICDE.2009.111
http://dx.doi.org/10.1109/ICDE.2009.111
https://doi.org/10.1145/2000824.2000825
https://doi.org/10.1145/2000824.2000825
https://doi.org/10.1145/2000824.2000825
https://doi.org/10.1023/A:1009884809343
https://doi.org/10.1023/A:1009884809343
https://doi.org/10.1023/A:1009884809343
https://doi.org/10.1145/1066157.1066243
http://doi.acm.org/10.1145/1066157.1066243
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.14778/3342263.3342639

124 bibliography

[136] K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems”. In: SIAM J. Comput. 18.6 (Dec. 1989),
pp. 1245–1262. issn: 0097-5397. doi: 10.1137/0218082. url: http://dx.doi.
org/10.1137/0218082.

[137] Kaizhong Zhang, Rick Statman, and Dennis Shasha. “On the editing distance
between unordered labeled trees”. In: Information Processing Letters 42.3 (1992),
pp. 133–139. issn: 0020-0190. doi: https : / / doi . org / 10 . 1016 / 0020 -
0190(92) 90136 - J. url: https : / / www . sciencedirect . com / science /
article/pii/002001909290136J.

[138] Zijian Zheng, Ron Kohavi, and Llew Mason. “Real World Performance of Asso-
ciation Rule Algorithms”. In: Proc. of the ACM Int. Conf. on Knowledge Discovery
and Data Mining (SIGKDD). 2001, 401–406.

[139] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. “JOSIE: Over-
lap Set Similarity Search for Finding Joinable Tables in Data Lakes”. In: Pro-
ceedings of the 2019 International Conference on Management of Data. SIGMOD
’19. Amsterdam, Netherlands: ACM, 2019, pp. 847–864. isbn: 978-1-4503-5643-5.
doi: 10.1145/3299869.3300065. url: http://doi.acm.org/10.1145/
3299869.3300065.

[140] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. “Designing Distributed Tree-based Index Structures for Fast RDMA-
capable Networks”. In: Proceedings of the 2019 International Conference on Man-
agement of Data. SIGMOD ’19. Amsterdam, Netherlands: ACM, 2019, pp. 741–
758. isbn: 978-1-4503-5643-5. doi: 10.1145/3299869.3300081. url: http:
//doi.acm.org/10.1145/3299869.3300081.

https://doi.org/10.1137/0218082
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1137/0218082
https://doi.org/https://doi.org/10.1016/0020-0190(92)90136-J
https://doi.org/https://doi.org/10.1016/0020-0190(92)90136-J
https://www.sciencedirect.com/science/article/pii/002001909290136J
https://www.sciencedirect.com/science/article/pii/002001909290136J
https://doi.org/10.1145/3299869.3300065
http://doi.acm.org/10.1145/3299869.3300065
http://doi.acm.org/10.1145/3299869.3300065
https://doi.org/10.1145/3299869.3300081
http://doi.acm.org/10.1145/3299869.3300081
http://doi.acm.org/10.1145/3299869.3300081

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Objective of this Thesis
	Similarity Queries
	Data Representation & Similarity Functions
	Trees & the Tree Edit Distance
	Sets & Set Similarity
	Practical Use Case

	Contributions
	Scalable Top-k Subtree Similarity Queries
	Density-Based Clustering for Sets
	Reproducibility

	Thesis Outline

	A Scalable Index for Top-k Subtree Similarity Queries
	Introduction
	Notation, Background, and Problem Statement
	Effective Candidate Generation
	Index and MergeAll Algorithm
	Candidate Index
	MergeAll Algorithm

	Cone: Partition-Based Traversal
	Linear Space Index and SlimCone
	Indexing in Linear Space
	The SlimCone Algorithm

	Efficient Index Updates
	Related Work
	Empirical Evaluation
	Setup & Datasets
	Indexing
	Effectiveness and Query Time

	Conclusion

	Scaling Density-based Clustering to Large Collections of Sets
	Introduction
	Background & Problem Definition
	Set Similarity and -Neighborhood
	Indexing Techniques for Sets
	Density-Based Clustering
	The DBSCAN Algorithm
	Problem Statement

	Baseline Approaches
	Sym-Clust: DBSCAN with Inverted Index
	Join-Clust: Materialized Neighborhoods

	The Spread Algorithm
	Key Challenges
	Data Structures
	The Algorithm
	Correctness
	Complexity Analysis

	Experimental Evaluation
	Index & Cluster Statistics
	Runtime Efficiency
	Memory Efficiency
	Scalability

	Related Work
	Conclusion

	A Multi-Core Solution for Density-Based Clustering of Sets
	Preliminaries
	A Simple Multi-Core Extension of Spread
	Refining the Simple Algorithm
	Idle Clustering Thread
	Cache Misses and False Sharing
	Controlling the Memory

	Multi-Core Spread
	Multi-Core Join-Clust
	Experimental Results
	Conclusion & Outlook

	Conclusions & Future Work
	Reproducibility Package
	Hardware, Operating System, and Software
	Quick Start
	Reproducibility Package
	Datasets, Queries, and Results
	Package Details

	Flexibility
	Parameters
	Plots

	Time Estimates

	Bibliography

