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Motivation

Density-Based Clustering:
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Motivation

Density-Based Clustering: Sets and the Hamming Distance:

Each data point represents a set:
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The DBSCAN Algorithm'

Two Parameters: € (similarity threshold), minPts (density threshold)
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1Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.
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The DBSCAN Algorithm'

Two Parameters: € (similarity threshold), minPts (density threshold)

®...r @ .. Neighborofr

> minPts = Core
PP oo

°

) o ®*“eo0
' Y
~— °

oo DBSCAN or neighbor-by-neighbor order

» Indexes accelerate neighborhood queries.

« Symmetric indexes return all neighbors for a given query point.

1Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.



Effective Indexes for Sets

« Optimized set indexes are asymmetric and generate fewer candidates.
« Asymmetric indexes
« rely on a specific processing order and

« return only a specific part of the neighborhood, the lookahead neighbors.

« Problem: Asymmetric indexes are not compatible with DBSCAN order.
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The Spread Algorithm

Spread integrates asymmetric indexes into DBSCAN in linear space.

Algorithm Outline:

« Impose a processing order that is compatible with asymmetric indexes.
« Retrieve each pair of neighbors once = lookahead neighbors are sufficient.

+ Lookahead neighbors are not enough to deduce clusters = backlinks to fix it.

Multiple subclusters may grow independently = Spanning tree of subclusters.

+ Propagate information forward, i.e., spread the information.



Find All (Border) Points of a Cluster

Collection R: Problem:

Ne(r1) r1{1,4,7,8,10,11, 12, 13, 14}
Q"7 r2{1,3,4,5,6,12,13,14}
r3{1,4,7,8,10,11}
° r4 {7,8,9,10,11}
rs{1,3,4,5,6}

e re {1,2,4,7,8}

78 r7{7,8,10,11}
o rs {3,4,7, 8}
ro {2,3,4,5}
I'5 r0{1,2,3,4}

« r1 sees r3 as lookahead neighbor.

o But: r3 does not see ry.

e ...core set
o...border set

€ = 3, minPts = 4.



Find All (Border) Points of a Cluster

Ne(r3)

e ...core set
o...border set

€ = 3, minPts = 4.

Collection R:

r3{1,4,7,8, 10,11}

r4{7,8,9,10, 11}
r5{1,3,4,5,6}
re {1,2,4,7,8}
r7{7,8,10,11}

rg {3,4,7,8}
r9{2,3,4,5}
rio{1,2,3,4}

Problem:
« r1 sees r3 as lookahead neighbor.

o But: r3 does not see ry.

Solution:
« r3 stores a link back to ry.
- r3 sees rj retrospectively.

« Max. minPts backlinks per set
= O (n) space, with n = |R|.



Identifying Core Points Correctly
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Collection R:

re {1,2,4,7,8}
r7{7,8,10,11}
rg {3,4,7,8}
r9{2,3,4,5}
rio{1,2,3,4}

Problem:

« 15 sees only ry and ryg as neighbors.

« But: r; sees r; as neighbor
= r; wrongly classified as non-core.



Identifying Core Points Correctly

Collection R:

§+1

<
re {1,2,4,7,8}
r7{7,8,10,11}
rg {3,4,7,8}
r9{2,3,4,5}
rio{1,2,3,4}

e ...core set

o...border set Ne(rs)

€ = 3, minPts = 4.

Problem:
« 15 sees only ry and ryg as neighbors.

« But: r; sees r; as neighbor
= r; wrongly classified as non-core.

« Maintain a density counter per set.
 r, increments counter of rs.

« Use counter to classify rs = core.



Subcluster Merging

Problem:
Collection R:
G\ « rg belongs to subcluster Cs (of r3).
* rg sees ryp, Which is core and belongs
5 to subcluster Cs (of rs).
Ne(rs)

+ Subclusters must be merged.
r7 {7,8,10, 11}
rs{3,4,7,8}
. r0{2,3,4,5)
s r10{1,2,3,4}

e ...core set
o...border set

€ = 3, minPts = 4.



Subcluster Merging

e ...core set
o...border set

Ne(re)

€ = 3, minPts = 4.

Collection R:

r6{1,2,4,7,8}

r7{7,8,10,11}
rg {3,4,7,8}
r9{2,3,4,5}
rio{1,2,3,4}

Problem:

« rg belongs to subcluster Cs (of r3).

* rg sees ryp, Which is core and belongs

to subcluster Cs (of rs).

« Subclusters must be merged.

« Link subclusters in spanning tree.

« Disjoint-set data structure

= O (n) space, with n = |R|.



Experimental Results - Runtime
CELONIST:

BMS-POS: KOSARAK:
3.2 - 10° sets (avg. size: 9.3) 6.1-10° sets (avg. size: 11.9) 8.2 - 10° sets (avg. size: 20.3)
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Runtime over €, minPts = 16.

1Join-CIus!: DBSCAN is executed after a set similarity join that materializes neighborhoods.

2Sym—CIus!: DBSCAN is executed with a symmetric index to query the neighborhoods on the fly.



Experimental Results - Memory

BMS-POS: KOSARAK: CELONIST:
3.2 - 10° sets (avg. size: 9.3) 6.1-10° sets (avg. size: 11.9) 8.2 - 10° sets (avg. size: 20.3)
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Heap peak over €, minPts = 16.

1Join-CIus!: DBSCAN is executed after a set similarity join that materializes neighborhoods.

2Sym—CIus!: DBSCAN is executed with a symmetric index to query the neighborhoods on the fly.



Concluding Remarks

‘ Fast Runtime ‘ Low Memory ‘ Effective Set Indexes
DBSCAN X v (linear) X
Join-Based v X (quadratic) v
Spread v v (linear) v

Conclusion:
« Asymmetric set indexes: more effective but not compatible with DBSCAN.
« Materialization-based solutions have a large memory footprint.

» Spread combines the best of the two worlds and is DBSCAN-compliant.
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