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Motivation

Density-Based Clustering:

Sets and the Hamming Distance:
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Each data point represents a set:
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The DBSCAN Algorithm1

Two Parameters: ϵ (similarity threshold), minPts (density threshold)

minPts = 7

. . . r . . .Neighbor of r

ϵ

≥ minPts⇒ Core

DBSCAN or neighbor-by-neighbor order

• Indexes accelerate neighborhood queries.

• Symmetric indexes return all neighbors for a given query point.

1Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.
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E�ective Indexes for Sets

• Optimized set indexes are asymmetric and generate fewer candidates.

• Asymmetric indexes
• rely on a specific processing order and
• return only a specific part of the neighborhood, the lookahead neighbors.

• Problem: Asymmetric indexes are not compatible with DBSCAN order.

asymmetric
candidates

symmetric
candidates

lookahead
neighbors

r

ϵ-neighborsprocessed

unprocessed

processing order
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The Spread Algorithm

Spread integrates asymmetric indexes into DBSCAN in linear space.

Algorithm Outline:

• Impose a processing order that is compatible with asymmetric indexes.

• Retrieve each pair of neighbors once⇒ lookahead neighbors are su�icient.

• Lookahead neighbors are not enough to deduce clusters⇒ backlinks to fix it.

• Multiple subclusters may grow independently⇒ Spanning tree of subclusters.

• Propagate information forward, i.e., spread the information.
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Find All (Border) Points of a Cluster

r9

r5

Nϵ (r1)

r10

r2

r8
r6

r3r1

r7
r4

. . . core set

. . . border set

Collection R:

r10 {1, 2, 3, 4}
r9 {2, 3, 4, 5}
r8 {3, 4, 7, 8}

r7 {7, 8, 10, 11}
r6 {1, 2, 4, 7, 8}
r5 {1, 3, 4, 5, 6}

r4 {7, 8, 9, 10, 11}
r3 {1, 4, 7, 8, 10, 11}

r2 {1, 3, 4, 5, 6, 12, 13, 14}
r1 {1, 4, 7, 8, 10, 11, 12, 13, 14}

ϵ

ϵ = 3, minPts = 4.

Problem:

• r1 sees r3 as lookahead neighbor.

• But: r3 does not see r1.

Solution:

• r3 stores a link back to r1.

• r3 sees r1 retrospectively.

• Max. minPts backlinks per set
⇒ O (n) space, with n = |R|.
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Identifying Core Points Correctly

r9

r5

Nϵ (r5)

r10

r2

r8
r6

r3r1

r7
r4

ϵ

. . . core set

. . . border set

Collection R:

r10 {1, 2, 3, 4}
r9 {2, 3, 4, 5}
r8 {3, 4, 7, 8}

r7 {7, 8, 10, 11}
r6 {1, 2, 4, 7, 8}
r5 {1, 3, 4, 5, 6}

r4 {7, 8, 9, 10, 11}
r3 {1, 4, 7, 8, 10, 11}

r2 {1, 3, 4, 5, 6, 12, 13, 14}
r1 {1, 4, 7, 8, 10, 11, 12, 13, 14}C3

ϵ = 3, minPts = 4.

Problem:

• r5 sees only r9 and r10 as neighbors.

• But: r2 sees r5 as neighbor
⇒ r5 wrongly classified as non-core.

Solution:

• Maintain a density counter per set.

• r2 increments counter of r5.

• Use counter to classify r5 ⇒ core.
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Subcluster Merging
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ϵ = 3, minPts = 4.

Problem:

• r6 belongs to subcluster C3 (of r3).

• r6 sees r10, which is core and belongs
to subcluster C5 (of r5).

• Subclusters must be merged.

Solution:

• Link subclusters in spanning tree.

• Disjoint-set data structure
⇒ O (n) space, with n = |R|.
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Experimental Results – Runtime

BMS-POS:
3.2 · 105 sets (avg. size: 9.3)

KOSARAK:
6.1 · 105 sets (avg. size: 11.9)

CELONIS1:
8.2 · 106 sets (avg. size: 20.3)
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Spread Join-Clust1 Sym-Clust2

Runtime over ϵ , minPts = 16.

1Join-Clust: DBSCAN is executed a�er a set similarity join that materializes neighborhoods.
2Sym-Clust: DBSCAN is executed with a symmetric index to query the neighborhoods on the fly.
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Experimental Results – Memory

BMS-POS:
3.2 · 105 sets (avg. size: 9.3)

KOSARAK:
6.1 · 105 sets (avg. size: 11.9)
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Concluding Remarks

Fast Runtime Low Memory E�ective Set Indexes

DBSCAN × X (linear) ×
Join-Based X × (quadratic) X

Spread X X (linear) X

Conclusion:

• Asymmetric set indexes: more e�ective but not compatible with DBSCAN.

• Materialization-based solutions have a large memory footprint.

• Spread combines the best of the two worlds and is DBSCAN-compliant.
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