Scaling Density-Based Clustering to Large Collections of Sets

Daniel Kocher*, Nikolaus Augsten*, and Willi Mann+

*University of Salzburg +Celonis SE

EDBT 2021 March 25, 2021

Density-Based Clustering:

Motivation

Density-Based Clustering:

Motivation

Density-Based Clustering:

Sets and the Hamming Distance:

Each data point represents a set:

Two Parameters: ϵ (similarity threshold), minPts (density threshold)

¹Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.

Two Parameters: ϵ (similarity threshold), minPts (density threshold)

¹Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.

Two Parameters: ϵ (similarity threshold), minPts (density threshold)

¹Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.

Two Parameters: ϵ (similarity threshold), minPts (density threshold)

¹Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.

Two Parameters: ϵ (similarity threshold), minPts (density threshold)

¹Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.

Two Parameters: ϵ (similarity threshold), minPts (density threshold)

- Indexes accelerate neighborhood queries.
- Symmetric indexes return all neighbors for a given query point.

¹Ester et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. SIGKDD 1996.

Effective Indexes for Sets

- Optimized set indexes are asymmetric and generate fewer candidates.
- Asymmetric indexes
 - · rely on a specific processing order and
 - return only a specific part of the neighborhood, the lookahead neighbors.
- **Problem:** Asymmetric indexes are not compatible with DBSCAN order.

Spread integrates asymmetric indexes into DBSCAN in linear space.

Algorithm Outline:

- Impose a processing order that is compatible with asymmetric indexes.
- Retrieve each pair of neighbors once \Rightarrow **lookahead neighbors are sufficient**.
- Lookahead neighbors are not enough to deduce clusters \Rightarrow **backlinks to fix it**.
- Multiple subclusters may grow independently ⇒ **Spanning tree of subclusters.**
- Propagate information forward, i.e., spread the information.

Find All (Border) Points of a Cluster

Problem:

- r_1 sees r_3 as lookahead neighbor.
- But: r_3 does not see r_1 .

 $\epsilon = 3$, minPts = 4.

Find All (Border) Points of a Cluster

$\epsilon = 3$, minPts = 4.

Problem:

- r_1 sees r_3 as lookahead neighbor.
- But: r_3 does not see r_1 .

Solution:

- r_3 stores a link back to r_1 .
- r₃ sees r₁ retrospectively.
- Max. minPts backlinks per set $\Rightarrow O(n)$ space, with n = |R|.

Identifying Core Points Correctly

Problem:

- r_5 sees only r_9 and r_{10} as neighbors.
- But: r₂ sees r₅ as neighbor

 \Rightarrow *r*⁵ wrongly classified as non-core.

 $\epsilon = 3$, minPts = 4.

Identifying Core Points Correctly

 $\epsilon = 3$, minPts = 4.

Problem:

- r_5 sees only r_9 and r_{10} as neighbors.
- But: r₂ sees r₅ as neighbor
 ⇒ r₅ wrongly classified as non-core.

Solution:

- Maintain a density counter per set.
- r_2 increments counter of r_5 .
- Use counter to classify $r_5 \Rightarrow$ core.

Problem:

- r_6 belongs to subcluster C_3 (of r_3).
- *r*₆ sees *r*₁₀, which is core and belongs to subcluster *C*₅ (of *r*₅).
- Subclusters must be merged.

 $\epsilon = 3$, minPts = 4.

 $\epsilon = 3$, minPts = 4.

Problem:

- r_6 belongs to subcluster C_3 (of r_3).
- *r*₆ sees *r*₁₀, which is core and belongs to subcluster *C*₅ (of *r*₅).
- Subclusters must be merged.

Solution:

- Link subclusters in spanning tree.
- Disjoint-set data structure $\Rightarrow O(n)$ space, with n = |R|.

Experimental Results – Runtime

BMS-POS:

 $3.2 \cdot 10^5$ sets (avg. size: 9.3)

KOSARAK: $6.1 \cdot 10^5$ sets (avg. size: 11.9)

CELONIS1: 8.2 · 10⁶ sets (avg. size: 20.3)

Runtime over ϵ , minPts = 16.

Join-Clust: DBSCAN is executed after a set similarity join that materializes neighborhoods.

²Sym-Clust: DBSCAN is executed with a symmetric index to query the neighborhoods on the fly.

Experimental Results – Memory

BMS-POS:

 $3.2 \cdot 10^5$ sets (avg. size: 9.3)

KOSARAK: $6.1 \cdot 10^5$ sets (avg. size: 11.9)

CELONIS1: 8.2 · 10⁶ sets (avg. size: 20.3)

Heap peak over ϵ , minPts = 16.

¹ Join-Clust: DBSCAN is executed after a set similarity join that materializes neighborhoods.

²Sym-Clust: DBSCAN is executed with a symmetric index to query the neighborhoods on the fly.

	Fast Runtime	Low Memory	Effective Set Indexes
DBSCAN	×	√ (linear)	×
Join-Based	\checkmark	× (quadratic)	\checkmark
Spread	\checkmark	✓ (linear)	\checkmark

Conclusion:

- Asymmetric set indexes: more effective but not compatible with DBSCAN.
- Materialization-based solutions have a large memory footprint.
- Spread combines the best of the two worlds and is DBSCAN-compliant.

Scaling Density-Based Clustering to Large Collections of Sets

Daniel Kocher*, Nikolaus Augsten*, and Willi Mann+

*University of Salzburg +Celonis SE

EDBT 2021 March 25, 2021

